При настройке П-регулятора следует иметь в виду, что чрезмерное увеличение запаса устойчивости улучшает качество регулирования, так как при этом затягивается переходной в системе. С учётом этого для системы с П-регулятором имеется определённое значение коэффициента его передачи k, который и следует выбрать при настройке системы.
Интегральные регуляторы.
Регуляторы с законом регулирования
называются интегральными или И-регуляторами.
Хотя путём выбора оптимального значения коэффициенты передачи и можно существенно уменьшить, установив ошибку регулирования, её полная, ликвидация в системе с П-регулятором даже теоретически невозможна. Основное назначение законов И-регуляторов – ликвидация установившихся ошибок регулирования. Как самостоятельные регуляторы И-регуляторы применяются редко из-за медленного возрастания регулирующего воздействия на объект при отклонении регулируемой величины.
Дифференциальные регуляторы.
П-регуляторы оказывают на объект существенное регулирующее воздействие, когда регулируемая величина уже имеет значительное отклонение от заданного значения.
И-регуляторы оказывают регулирующее воздействие постоянно наращивая его по интегралу. П- и И-регуляторы не могут упредить ожидаемое отклонение регулируемой величины, а реагируют только на уже имеющиеся в данный момент нарушения технологического процесса. Для упреждения нарушений используют Д-регуляторы, работающие по закону y = k dx / dt.
Пропорциональные регуляторы.
Приближение точки пересечения КЧХ разомкнутой системы отрицательной полуоси к точкеВ (-1, j 0)определяет запас устойчивости по модулюсзамкнутой автоматической системы регулирования. При приближении КЧХ к точке В увеличивается колебательность в замкнутой системе; при пересечении этой точки (запас устойчивости с = 0) в замкнутой системе возникают незатухающие колебания, а при охвате КЧХ точкиВ (-1, j 0)замкнутая система неустойчива. Так как модуль КЧХ системы определяется коэффициентом передачи (усиления) разомкнутой системы на данной частоте, то степень приближения КЧХ разомкнутой системы можно регулировать путём изменения её коэффициента передачиk.
Комплексная частотная характеристика разомкнутой системы
W (j w) = WP(j w) WОБ(j w)(26)
Из этого выражения следует, что коэффициент передачи разомкнутой системы можно изменять с помощью автоматического регулятора, если его комплексная частотная характеристика имеет вид
WC(j w) = kP,(27)
ГдеkP-коэффициент передачи регулятора, являющийся его параметром настройки. При этом КЧХ разомкнутой системы имеет вид
W (j w) = kPWОБ(j w).(28)
Из этого выражения следует, что при подключении кобъекту такого регулятра КЧХ объекта увеличивается на каждой частоте пропорционально вkpраз. Поэтому регулятора с таким пропорциональным законом регулирования называютпропорциональными регуляторами или П-регуляторами.
В динамическом отношении П-регуляторы являются усилительным звеном. Передаточная функция П-регулятора
WП(р) = kP. (29)
Рисунок 14. Характер изменения КЧХ разомкнутой системы с П-регулятором.
На рис.14 представлены КЧХ разомкнутой системы с П-регулятором. ПриkP= 1 КЧХ разомкнутой системы совпадает с КЧХ объекта регулирования. ПриkP> 1 КЧХ разомкнутой системы приближается к точкеВ(-1, j 0); приkP< 1 отходит от этой точки. В качестве примера на рис.14 изображены две КЧХ разомкнутой системы приkP=kP1= 1,5 иkP=kP2= 0,5.
В соответствии сW (j w) = kPWОБ(j w)на рис.14, например, вектор КЧХ разомкнутой системы равенОЕ2= kP1* ОА2= 1,5 ОА2, гдеОА2- вектор КЧХ объекта.
Закон регулирования П-регулятора является статическим. Переходные процессы П-регулятора описываются отношением
Y = kPx(30)
гдеx -входное воздействие на регулятор, равное отклонениюЕрегулируемой величины от заданного значения;y-воздействие регулятора
на регулирующий орган, направленное на ликвидацию отклонения регулируемой величины от заданного значения.
При настройке П-регулятора следует иметь в виду, что чрезмерное увеличение запаса устойчивостисухудшает качество регулирования, т.к. при этом затягивается переходной процесс в системе (увеличивается время регулирования), увеличиваются динамическая ошибка регулирования, установившаяся ошибка регулирования как по каналу задающего, так и по каналу возмущающего воздействий.
С учётом этого для системы с П-регулятором имеется определённое оптимальное значение коэффициента его передачиkp, которое и следует выбирать при настройке системы.
Интегральные регуляторы.
При статистическом объекте и статистическом регуляторе АСР является статистической как по каналу задающего, так и по каналу возмущающего воздействий.
При астатическом объекте система астатическая по каналу задающего воздействия и статическая – по каналу возмущающего воздействия.
Таким образом, АСР П-регулятором всегда имеет установившуюся ошибку регулирования по канал возмущающего воздействия, а при статическом объекте – и по каналу задающего воздействия, Хотя путём выбора оптимального значения коэффициента передачи П-регулятора и можно существенно уменьшить установившуюся ошибку регулирования,её полная ликвидация в системе с П–регулятором даже теоретически невозможна.
Если по условия технологии требуется точное поддержание заданного значения регулируемой величины, то в знаменателе передаточной функцииW (р) = WP(р) WОБ(р)разомкнутой системы в качестве сомножителя должен быть операторр. С учётом этого передаточная функция разомкнутой системы должна иметь видW(р) = WP(р) Wоб(р) = WОБ(р) / р,т.е. необходимо применение в системе астатического регулятора с законом регулирования, определяемого передаточной функциейW (р) = 1 / р,или в более общем случае
W (р) = kP/р(31)
СравниваяW (р) = kP/риW (р) = k/р, видим ,что регулятор с передаточной функциейW (р) = kP/рв динамическом отношении является интегрирующим звеном. Выходная величина такого регулятора пропорциональна интегралу от входной величины, т.е.
(32)
Поэтому регуляторы с таким законом регулирования называютсяинтегральнымиили сокращённИ-регуляторами.
Коэффициент передачиkp определяет степень ввода в закон регулирования интеграла и является параметром настройки И-регулятора. В соответствии сL (w) = 20 lg k – 20 lg wКЧХ И-регулятораимеет вид
WИ(i w) = kPe- jp/ 2/ w. (33)
КЧХ разомкнутой системы с И-регулятором определяется выражением
W (i w) = kPe- jp/ 2WОБ(i w) / w. (34)
Из этого выражения следует, что в системе с И-регулятором вектор КЧХ объекта на данной частоте увеличивается вkp/wраз и поворачивается по часовой стрелке на 90°.
Рисунок 15. Кмплексные частотные характеристики объекта Wоб (j w) и разомкнутой АСП W (j w) с И-регулятором.
На рис.15 выполнено построение КЧХ разомкнутой системы с И-регулятором и известной КЧХ объекта регулирования. Каждый вектор КЧХ разомкнутой системы связан с КЧХ объекта выражением … Например,
Так как приw®0 отношениеkP/w®Ґ, то КЧХ разомкнутой системы с И-регулятором приw®0 уходит в бесконечность, асимптотически приближаясь в квандрантеIIIк отрицательному направлению мнимой полуоси. Основное назначение закона И-регулирования – ликвидация установившейся ошибки регулирования.
Как самостоятельные регуляторы И-регулиры применяются редко из-за медленного нарастания регулирующего воздействия на объект при отклонении регулируемой величины. В связи с этим И-регулиры в основном применяются для регулирования в комплекте с регуляторами, формирующими другие законы регулирования, например с П-регуляторами.
Обычно закон И-регулирования формируется не самостоятельным регулятором, а блоком или устройством, конструктивно являющимся составной частью регулятора, реализующего более сложный, например пропорционально-интегральный, закон регулирования.
АналогичноW (p) = 1 / T pпередаточная функция И-регулятора имеет вид
WИ(p) = 1 / (TИp),(35)
гдеTИ- постоянная времени интегрирования – параметр настройки регулятора.
Рассмотрим физический смысл постоянной времени интегрирования.
Закон И-регулирования И-регулирования с учётом (35) выражается формулой
y = (1 / TИ)¦x dt(36)
Предположим, что на вход регулятора поступил постоянный сигналх = х0ВХ. При этом выходной сигнал изменяется по законуy = (1 / TИ)¦x0ВХdt = х0ВХt / TИ. По истечении времениt=Tи значение выходного сигнала равноу = х0ВХ.
Таким образом, постоянная времени интегрирования И-регулятора равна , в течении которого с момента поступления на вход регулятора постоянного сигнала сигнал на выходе регулятора достигает значения. Равного значению входного сигнала.
Дифференциальные регулирующие устройства.
Пропорциональные регуляторы оказывают на объект существенное регулирующее воздействие, когда регулируемая величина уже имеет значительное отклонение от заданного значения. Интегральные регуляторы оказывают регулирующее воздействие, постоянно наращивая его по интегралу.
Таким образом, П- и И-регуляторы не могут упреждать ожидаемые отклонения регулируемой величины, регулируя только на уже имеющиеся в данный момент нарушения технологического процесса. В то же время, если регулируемая величина в какой-то момент времени начинает быстро отклонятся от заданного значения, то это значит, что на объект поступили значительные возмущения и что отклонения регулируемой величины в результате этого воздействия будут значительными.
В этом случае желательно иметь регулятор, который вырабатывал бы регулирующее воздействие пропорционально скорости отклонения регулируемой величины от заданного значения
У = ТДdx / dt(37)
Такой регулятор при большой скорости отклонения регулируемой величины, когда в начальный момент П-регулятор оказывает слабое регулирующее на объект, а И-регулятор только начинает наращивать регулирующее воздействие, оказывал бы существенное регулирующее воздействие на объект, ликвидируя тем самым ожидаемое отклонение регулируемой величины, причём чем дольше возмущающее воздействие на объект, тем быстрее отклоняется регулируемая величина от задания и тем значительнее регулирующее воздействие регулятора на объект, направленное на нейтрализацию возмущающего воздействия.
С учетом изложенного для автоматического регулирования а практику введены дифференциальные регулирующие устройства, формирующие закон регулирования, пропорциональный скорости отклонения регулируемой величиныу=Тдdx/dt.Такие регулирующие устройства с законом регулированияу=Тдdx/dtдифференцируют поступающий на его вход сигнал (отклонение регулируемой величины) и называютсядифференциальнымиилиД-регуляторами.
Передаточная функция Д-регулятора
WД(p) = TДp (38)
гдеTД- постоянная времени дифференцирования – параметр настройки регулятора.
При сравненииу = ТДdx / dtихВЫХ=k dхВХ/ dtвидно, что Д-регулятор в динамическом отношении является дифференцирующим звеном. Д-регулятору = ТДdx / dtотдельно для регулирования не применяется , т.к. он реагирует только на скорость отклонения регулируемой величины и не реагирует на постоянное значение этого отклонения, сколь елико бы оно ни было. Этот регулятор как блок регулирования конструктивно входит в состав какого-либо комбинированного регулятора, формирующего сложный закон регулирования, например пропорционально-интегрально-дифференциальный.
Вывод.
Курсовой проект был сделан для лучшего усвоения знаний, умений и навыков учащихся.
Он позволяет наглядно продемонстрировать работу динамической программы по теме «Регулярные регуляторы», а также провести контроль и оценку знаний по теоретической части
В совокупности это поможет учащимся лучше понять данную тему, получить теоретические и практические навыки и применить их в дальнейшем на практике.
Курсовой проект может быть применён учащимсмя в дальнейшем, как методическое пособие, по данной теме «Регулярные регуляторы» для лучшего усвоения.
Список литературы.
1.А.С. Клюев., «Автоматическое регулирование», Москва, «Высшая школа», 1986 г.
2.http://www.adastra.ru
3.http://home.uic.tula.ru/~sa241272/Russian/adaptive.html
4.Конспект лекций Рыткого А.В. по автоматическому управлению.
5.Ю.Н. Тюрин и др., «Статистический анализ данных на компьютере», Москва, «ИНФРА-М», 1998 г.
*Звенос придаточной функцией можно представить в виде последовательно соединённых усилительного звена с передаточной функциейW (p) = kи собственно интегрирующего звена. Однако т.к. усилительное звено изменяет только масштаб выходной величины, то для уменьшения числа звеньев при представлении АСР элементарными динамическими звеньями звено с передаточной функцией принимается за элементарное.
УУ
ОР
Оценка инерции данной технологической системы станет в будущем более затруднительной вследствие возрастания взаимодействия как внутри системы, так и вне ее. Главным фактором сделается растущее взаимодействие технологических систем с социальной системой. По мнению Центра ТЕМПО компании «Дженерал электрик»; экстраполяция тенденций во времени станет «непродуктивной» вследствие этих более сложных взаимодействий.
В целом не совсем понятно, на каких основаниях решения относительно финансирования
научных исследований и разработок принимаются «путем не вполне ясного введения мнений экспертов и групп давления» (Габор) и, возможно, других факторов. Рациональное обоснование подобных решений существует только там, где хорошо организованная служба среднесрочного и долгосрочного планирования — илнаучных исследований и разработок принимаются «путем не вполне ясного введения мнений экспертов и групп давления» (Габор) и, возможно, других факторов. Рациональное обоснование подобных решений существует только там, где хорошо организованная служба среднесрочного и долгосрочного планирования — или, говоря точнее, технологическое прогнозирование, полностью интегрированное с технологическим планированием,— обеспечивает прочную базу для принятия решений. В качестве показательного примера можно было бы привести корпорацию «Ксерокс» или фирму «Белл телефон лэбораториз» (компании «Америкой телефон энд телеграф»). Несколько экономистов провели в США актуальное и весьма интересное исследование ряда конкретных случаев, результаты которого опубликованы в сборнике «Темп и направление изобретательской деятельности» 1651.
Как уже указывалось, нормативное прогнозирование и неизбежное в конечном счете распространение изыскательского н нормативного технологического прогнозирования на интегральные схемы обратной связи способны концентрировать и направлять человеческую энергию таким образом, чтобы воздействовать на инерцию, присущую историческому процессу. Результат может обнаружиться двояким образом:
Ускорение перемещения технологии; детально разработанный прогноз должен включать в себя этот результат — и зачастую включает, в особенности если это тип прогноза, приводящего к «самоосуществляющемуся пророчеству»;
возможное замедление перемещения технологии после какого-то периода давления на технологические границы; роль этого явления особенно подчеркивают как корпорация «РЭНД», так и Центр ТЕМПО компании «Дженерал электрик».
Корпорация «РЭНД» идет даже еще дальше, утверждая, что давление на технологические границы может также создать замедляющий фактор, связанный с неоправданной сложностью систем: «Возможность, относительно которой мы размышляем, заключается в следующем: громоздкая сложность нынешних систем не обязательно представляет собой неизбежное следствие потребности в большей эффективности, а скорее есть следствие крайней необходимости выжать самую последнюю унцию эффективности из перегруженной непомерными требованиями техники в ее нынешнем состоянии... Короче говоря, можно надеяться на то, что небольшое ослабление оказываемого нами сильнейшего давления на технологическую границу в значительной степени уменьшило бы причиняющую беспокойство сложность систем оружия».
В том же докладе «РЭНД» упоминается еще один потенциальный замедляющий фактор: улучшение выбора целей путем нормативного прогнозирования может снизить эффективность разработок и производства и замедлить перемещение технологии. При отсутствии такого мощного компонента, как нормативное прогнозирование, могут быть выбраны более легкие (более «эффективные») методы разработок. Тем не менее следовало бы подчеркнуть важность для гражданских разработок и «социальной технологии», а также для других областей, доступных технологическому прогнозированию, вывода доклада «РЭНД», посвященного разработкам в ВВС США: «Как эффективность, так и правильная цель играет важную роль, но если нам приходится искать между ними компромисс, то пусть уж лучше пострадает эффективность».
Следующие периоды времени, введенные в качестве широких категорий, определяют временные координаты вертикального перемещения технологии вплоть до уровня применения (для первых четырехСледующие периоды времени, введенные в качестве широких категорий, определяют временные координаты вертикального перемещения технологии вплоть до уровня применения (для первых четырех уровней мы используем классификацию фаз научных исследований и разработок, предложенную Стэнфордским научно-исследовательским институтом):
1) период времени, предшествующий открытию (фаза открытия);
2) период времени между открытием и технологической применимостью или изобретением (фаза творчества);
3) период времени между изобретением или наличием соответствующей технологической конфигурации и началом разработок в широких масштабах (фаза воплощения);
4) время разработки (фаза разработки);
з) циклы главных технологических нововведений в конкретной области;
6) циклы принятия потребителем (деловые циклы). Циклы, приведенные под номерами 5 и 6, разумеется, тесно связаны друг с другом, хотя и не идентичны. Циклы принятия потребителем становятся фактором, «направляющим» разработки в таких технологических областях, для которых характерно широкое применение нормативного мышления, например авиакосмическая промышленность и производство ЭВМ.
Фазы 1—4 не обязательно следуют друг за другом непосредственно. Каждая фаза зависит от определенного сочетания реальных возможностей, для чего иногда приходится ждать завершения ризвития в других областях. Существует много открытий, которые еще нс привели ни к изобретению, ни к разработкам. Одной из главных задач технологического прогнозирования и является установление соответствующего распределения фаз во времени.
1.4.2. Прогнозирование в области рационального знания
«Der Негг Gott ist raffiniert, aber boshaft ist Er nicht» («Господь бог изощрен, но он не злонамерен») — то обстоятельство, что это изречение Эйнштейна истинно, имеет важнейшее значение при проведении фундаментальных исследований. Это означает, как весьма аргументированно подчеркнул Винер , что уровень фундаментальных исследований находится в выгодном положении благодаря одному условию, которого нет ни на одном другом уровне, пересекаемом в процессе перемещения технологии: окружающая среда фундаментальной науки и технологии не «реагирует» на исследования, проводимые человеком; можно стремиться к какой-либо цели, выбирая стратегию, в которой можно не учитывать контрстратегию природы. Здесь и только здесь фактор времени не заложен в природе явлений, а вводится самим человеком. Прогнозирование сводится к распознаванию неизменных схем, образуемых целями, критериями и связями, а также к оценке способности человека достичь их и того темпа, в котором это можно осуществить.
Несмотря на подобное положение дел, благоприятствующее включению фундаментального уровня в технологическое прогнозирование, этой области до сих пор уделялось гораздо меньше внимания, чем она заслуживает. Нет сомнения, что «пуристская» позиция ученых сыграла роль шлагбаума, препятствующего вторжению на их территорию.
^^Прогнозирование на фундаментальных уровнях чрезвычайно : важно и с другой точки зрения: любая ошибка, совершенная на (этих уровнях, приводит к значительным и дорогостоящим неудачам. Осознание этого обстоятельства побудило ВМФ США проводить политику усиления технологического прогнозирования на фундаментальных уровнях. «Научные перспе^^Прогнозирование на фундаментальных уровнях чрезвычайно : важно и с другой точки зрения: любая ошибка, совершенная на (этих уровнях, приводит к значительным и дорогостоящим неудачам. Осознание этого обстоятельства побудило ВМФ США проводить политику усиления технологического прогнозирования на фундаментальных уровнях. «Научные перспективы» и «технологические возможности»— вот два различных типа данных, которые вводятся в систему прогнозирования ВМФ США и затем объединяются на более поздней стадии.
Оказалось, что отсутствие нормативного мышления делает фундаментальные исследования совершенно непригодными для использования в американских оборонных разработках.
Ядерная энергия представляет наиболее разительный пример поэтапного приобретения фундаментальных знаний, последствия которого были осознаны большинством ученых, связанных с данной работой, пока не вступил в действие ярко выраженный нормативный фактор. Основные предпосылки для осуществления цепной реакции деления ядра можно следующим образом сопоставить с сопутствовавшими их достижению прогнозами.
Можно считать, что в этом параллельном развитии прогнозов и достижений три фактора вызвали отсутствие четкого прогноза до того, как был осуществлен третий этап.
1. Структура обеспеченного научного знания не подвергалась систематической оценке. Выполненный заблаговременно правильный расчет кривой дефекта масс игнорировался в большинстве прогнозов, которые обычно указывали выход энергии порядка 0,01 массового эквивалента (характерный для ядерного синтеза) вместо 0,001, имеющего место при делении, и ориентировались на деление легких элементов (водород, литий и пр.),— даже Сци-лард в 1935 г. совершил эту ошибку. Потенциальная роль нейтрона в цепной реакции, которая первоначально была понята, также вскоре была забыта.
2. Резко отрицательная позиция, занятая Резерфордом, «папой римским» ядерной физики, в отношении возможности использования цепной реакции, повлияла на многих ученых; Резерфорд, по-видимому, был поглощен мыслью о внешнем источнике нейтронов. которого (как и сейчас) не имелось для экономически выгодных применений, но это и «подавило» идею использования цепной реакции.
3. Отсутствие нормативного мышления проявилось в том, что внимание не было сконцентрировано на исследованиях, подводящих к третьему этапу, осуществимость которого была доказана. Ферми, например, который высказал несколько мыслей, носивших характер исследовательских прогнозов, ни разу не пошел дальше предсказания ряда второстепенных применений превращения элементов — производства радиоактивных индикаторов для медицин-C'KIIX целей и т. пЛ И только после того, как было продемонстрировано деление атомного ядра, стало стремительно развиваться нормативное прогнозирование, которое в свою очередь почти сразу же «дало толчок» решающим экспериментам, имевшим целью доказать осуществимость четвертого этапа. После этого нормативное прогнозирование приобрело достаточный вес, чтобы послужить основанием для научно-исследовательских работ огромного масштаба, проводившихся в течение трех лет, пока вероятностный прогноз не превратился в предсказание.
НЕДОСТАТКИ НАУЧНО-ТЕХНИЧЕСКОГО ПРОГНОЗИРОВАНИЯ
Прогнозирование—рискованное занятие для любого человека, взявшего на себя роль пророка. Его подстерегают такие опасности, как неопределенность и ненаде/кность имеющихся данных, сложность озанмоден-ствия прогнозов с «реальным миром», егоПрогнозирование—рискованное занятие для любого человека, взявшего на себя роль пророка. Его подстерегают такие опасности, как неопределенность и ненаде/кность имеющихся данных, сложность озанмоден-ствия прогнозов с «реальным миром», его собственная человеческая склонность принимать желаемое за действительное, эмоциональный характер людского мышления, а также склонность подгонять поддающиеся различному истолкованию «факты» под заранее составленную) схему. Вытекающие отсюда недостатки присущи всем формам прогнозирования. Кроме того, ряд опасно-стен, с которыми должен считаться прогнозист, связан с особым характером процесса появления изобретении II нововведении (и, возможно, особыми качествами самих людей, которые специализируются на прогнозировании в этон области). Некоторые из этих недостатков заслуживают более четких определений и кратких пояснении.
1. Отсутствие необходимого воображения и (или) дерзания. От этого недостатка очень страдает работа комиссии, составленных из выдающихся экспертов, многие из которых инстинктивно предпочитают излишнюю осторожность (особенно по отношению друг к другу), даже если они осознают опасность такого подхода и стараются быть предельно объективными. В качестве иллюстрации может служить один пример. В 1940 г. Национальная академия наук США создала специальную комиссию для оценки перспективности газовой турбины. Членами этого комитета были Т. фон Карман, Ч. Кеттерниг. Р. Мнлликен. М. Мейсон, А. Кристи и Л. Маркс. Их тщательно продуманный и взвешенный вывод, основанный на целом ряде консервативных до-пущеннн. гласил, что газовые турбины будут иметь удельный вес порядка 6—7 кг/л. с. против 0,5 кг/л. с. для весьма распространенных в то время двигателей внутреннего сгорания.
Если бы члены этой комиссии при выборе предположений исходили из оптимистических, а не пессимистических оценок, то они получили бы истинную цифру 0,2 кг/л. с. (подтвердилось). Фактически всего лишь год спустя в Англии уже появилась первая газовая турбина.
2. Чрезмерная восторженность. В истории известно немало случаев, когда пророки или изобретатели оставались непризнанными современниками и соотечественниками; слава приходила к ним потом, причем обычно из других стран. Достаточно упомянуть в этой связи Шарля де Голля, одного из первых пропагандистов тактики «молниеносной» войны; Фрэнка Уиттла—изобретателя турбореактивного двигателя; Циолковского, Оберта и Годдарда—провозвестников ракетной эры и т.д. В результате в настоящее время некоторые люди склонны слишком переоценивать подобные факты и утверждать, что в сущности «не важно, сколь фантастичными могут казаться наши ожидания, действительность все равно их превзойдет». Артур Кларк так говорит по этому поводу: