Основываясь на рисунке 3.4, можно сделать вывод о том, что в среднем у выбранных акций степень риска относительно невысока. Это следует из того, что коэффициент «бета» находится в пределах от 0 до 1. Хотя можно отметить, что простые акции «Сургутнефтегаза» лидировали в данной совокупности, и бета-коэффициент был всего лишь немногим меньше 1. Наиболее осторожный рост наблюдался у привилегированных акций РАО «ЕЭС России».
Коэффициент «альфа» характеризует ожидаемый доход на акцию в момент достаточной стабильности цен на акции в целом, когда доход рынка равен нулю. Альфа-коэффициент акций на рисунке 3.5 свидетельствует о том, что практически все акции, отобранные для рассмотрения были переоценены. Считается, что переоцененные акции будут корректироваться рынком уменьшением рыночной цены. Хотя акции Сбербанка при подсчете альфа-коэффициента показали свою переоцененность, в дальнейшем за период составления портфеля их цена возрастет на 23,8%.
Рисунок 3.4 – Бета-коэффициент акций
Рисунок 3.5 – Альфа-коэффициент акций
Принятие решений на основе альфа-коэффициента применяется при оперативном управлении портфеля ценных бумаг. Задачей же дипломного проекта является формирование оптимального портфеля на основе соотношения риска и дохода, поэтому отбор акций на основе альфа-коэффициента в данном случае не применим.
Коэффициент R-squared является коэффициентом детерминации и поэтому изменяется в пределах от 0 до 1. Его вычисление показало, что данных акции слабо коррелируют с рынком. Практически полное отсутствие корреляции показали привилегированные акции РАО «ЕЭС России».
Рисунок 3.6 – Коэффициент R-squared акций
Как уже описывалось выше, для составления оптимального портфеля достаточно определения математического ожидания как арифметической средней прошлых доходностей (рисунок 3.7). Математическое ожидание не отражает действительный прогноз доходности акций, который проводится на основе всех воздействующих факторов, но оно достаточно для применения математических моделей построения оптимального портфеля ценных бумаг.
Рисунок 3.7 – Математическое ожидание доходности акций
К специфике российского рынка акций относят ограниченное количество ликвидных инструментов, и схожесть их динамики. Таким образом, построение хорошо диверсифицированного портфеля по акциям затруднено, риск останется очень высоким, а его доходность будет зависеть от индекса РТС. Кроме того, альфа, бета-коэффициенты очень волатильны и неустойчивы.
Найдем теперь структуру оптимального портфеля акций с помощью пятишагового алгоритма Элтона-Грубера-Падберга. Алгоритм подробно описан в параграфе 2.4.1. Для проведения расчетов необходимо задать безрисковую дох-ть. За безрисковую ставку примем ожидаемую доходность портфеля ОФЗ, рассчитанную в предыдущем разделе и равную 16% годовых. Хотя в рассчитанном портфеле государственных облигаций присутствует некоторая доля риска, с некоторыми допущениями доходность по нему можно принять в качестве безрисковой.
Рассмотрим по порядку этапы составления оптимального портфеля и результаты расчетов сведем в таблицу 3.6.
1. Упорядочим ценные бумаги в порядке убывания отношения доходности к систематическому риску – отношение Трейнора (RVOLi). Под доходностью в данном случае понимается «вознаграждение» за приобретение данной ценной бумаги, превышающее безрисковую доходность. Систематический риск выражен бета-коэффициентом ценной бумаги.RVOLiрассчитывается с помощью формулы (27).
2. Наибольшее значение Трейнора было получено привилегированной акции РАО «ЕЭС России». Начиная с этой акции, будем добавлять ценные бумаги одну за другой и вычислять величинуFiпо формуле (28).
3. Сравнивая величиныFiс соответствующимиRVOLiдо тех пор, покаFiменьшеRVOLi, получим что начиная сi= 11 это соотношение изменяется на противоположное. Ценные бумаги с 1 по 10 будут иметь ненулевые веса в портфеле, а остальные – нулевые. Таким образом,F10является «ставкой отсечения» для отношения Трейнора.
4. После того как определено какие акции будут включены в портфель, необходимо определить в каких долях они будут представлены в этом портфеле. Для этого воспользуемся формулой (29) и вычислим величиныZi, чтобы определить, с какими весами будут входить в портфель первые 10 ценных бумаг: ЗначенияZiдляi= 11, ..., 14 полагаются равными нулю
5. Разделив каждуюZiна суммуZi(формула 30), получим веса, с которыми акции будут входить в портфель. Это сделать необходимо, так как суммаZiобычно не равна единиц. В нашем случае суммаZi= 54,82. Полученные значенияXiи являются долями ценных бумаг в портфеле.
Таблица 3.6 – Результаты расчетов оптимального портфеля акций
|
i
|
RVOLi |
Фi |
Zi |
Xi |
EESRP |
1
|
0,0306 |
0,0002 |
0,907 |
0,016 |
RTKMP |
2
|
0,0165 |
0,0026 |
8,591 |
0,155 |
SBER |
3
|
0,0147 |
0,0056 |
10,393 |
0,188 |
SIBN |
4
|
0,0143 |
0,0062 |
5,485 |
0,099 |
|
i
|
RVOLi |
Фi |
Zi |
Xi |
RTKM |
5
|
0,0103 |
0,0065 |
7,512 |
0,136 |
YUKO |
6
|
0,0103 |
0,0069 |
15,951 |
0,288 |
EESR |
7
|
0,0097 |
0,0068 |
3,264 |
0,059 |
LKOH |
8
|
0,0071 |
0,0065 |
1,204 |
0,032 |
SNGSP |
9
|
0,0065 |
0,0061 |
1,110 |
0,010 |
TATN |
10
|
0,0061 |
0,0060 |
0,411 |
0,009 |
GMKN |
11
|
0,0056 |
0,0058 |
0,000 |
0,000 |
GSPBEX |
12
|
0,0052 |
0,0056 |
0,000 |
0,000 |
MSNG |
13
|
0,0048 |
0,0054 |
0,000 |
0,000 |
SNGS |
14
|
0,0041 |
0,0051 |
0,000 |
0,000 |
На рисунке 3.8 отражена структура рассчитанного портфеля акций. Портфель состоит из непропорциональных частей: половина акций занимают 86,6% портфеля, другая половина – всего лишь 13,4%. Наибольшая доля выделена простым акциям компании «ЮКОС» – 28,8%. Однако, если учесть, что компания «Ростелеком» представлена в портфеле двумя видами акций (простые – 13,6%, привилегированные – 15,5%), то наибольшая доля данного портфеля принадлежит акциям именно этой компании (29,1%).
Ожидаемая доходность портфеля рассчитывается как взвешенное среднее математических ожиданий доходности входящих в него ценных бумаг, где в качестве весов взяты доли инвестиций, приходящихся на эти бумаги (формула 14). Прогнозируемая доходность портфеляmpсоставит 26,6% в месяц (горизонт прогнозирования).
Бета-коэффициент портфеля представляет собой взвешенное среднее коэффициентов «бета» входящих в него ценных бумаг, где в качестве весов выступают доли инвестиции в эти бумаги (формула 34). Таким образом, совокупный бета-коэффициент полученного портфеляbpMравен 0,676, что свидетельствует об относительно невысокой степени риска.
Рисунок 3.8 – Структура оптимального портфеля акций
1.12 Формирование оптимальной структуры совокупного портфеля ценных бумаг
Определение оптимальных портфелей государственных облигаций и акций не достаточно для составления конечного портфеля ценных бумаг. Необходимо также решить в каких пропорциях будут инвестироваться средства в эти портфели.
Для определения этих пропорций воспользуемся моделью Марковица, примененной при нахождении оптимального портфеля облигаций.
Характерной особенностью в данном случае будет то, что в качестве рассматриваемых единиц будут выступать не отдельные ценныебумаги, а сами портфели ценных бумаг. Поэтому интерес будет представлять динамика доходности портфелей, а динамика доходности отдельных их составляющих в расчет браться не будет.
При составлении портфеля акций тот факт, что цены были номинированы в долларах США, не влиял на конечный результат в виде доли ценной бумаги в портфеле. В данном случае при определении ковариаций с портфелем облигаций, выраженном в рублях, могут возникнуть расхождения. Поэтому возникает необходимость пересчета доходности акций, исходя из котировок акций в рублях. Курс доллара США представлен в таблице В.2 приложения В.
Для решения задачи нахождения оптимальной структуры совокупного портфеля ценных бумаг по модели Марковица будем использовать те же шаги, которые делались при составлении портфеля облигаций в параграфе 3.1.
Для построения эффективного множества возможных портфелей необходимо вычислить математическое ожидание и ковариационную матрицу.
За шаг расчета была принята одна неделя, но оценивалось значение доходности за месяц. Это целесообразно, так как больший шаг расчета повысит трудоемкость без существенного увеличения точности, а меньший шаг расчета существенно снизит диапазон данных до 6 величин. Оценивалась же доходность портфелей в месяц по причине того, что календарный месяц был выбран за горизонт расчета.
Доходность портфеля облигаций за месяц была найдена простым делением годовой доходности на 12. Недельная доходность портфеля акций была приведена к месячной путем умножения на количество недель.
Математическое ожидание доходности портфеля в данном случае рассчитано не как арифметическое среднее, а за него принята ожидаемая доходность, полученная в предыдущем параграфе. Она является более точной величиной, так как при расчетах был использован шаг в один рабочий день. Ряд доходностей (таблица В.1 приложения В) дан для того, чтобы рассчитать матрицу ковариаций и, следовательно, определить риск портфеля.
Для составления ковариационной матрицы необходимо рассчитать среднеквадратическое отклонение доходности портфелей и коэффициент корреляции между ними (таблица 3.7).
Ковариации рассчитаны на основе формулы (16). Результаты сведены в таблице 3.8. Ковариации портфеля облигаций и портфеля акций равны среднеквадратическому отклонению, возведенному в квадрат, то есть дисперсии этих портфелей.
Таблица 3.7 – Исходные данные для оптимизации совокупного портфеля
Наименовании параметра |
Портфельоблигаций
|
Портфельакций |
Математическое ожидание доходности, % в месяц |
1,333
|
26,600 |
Среднеквадратическое отклонение |
0,071
|
36,802 |
Коэффициент корреляции между портфелями |
0,168
|
Таблица 3.8 – Ковариационная матрица
|
Портфель облигаций
|
Портфель акций |
Портфель облигаций |
0,00497 |
0,43710 |
Портфель акций |
0,43711 |
1354,38 |
На основе этих данных возможно построить эффективное множество портфелей. Математическое ожидание доходности портфеля определяется как средневзвешенное доходностей, где в качестве веса выступает доля инвестиций к отдельную ценную бумагу (формула 14). Риск каждого портфеля определен по формуле (15). Результаты расчетов приведены в таблице В.3 приложения В.
На основе данных таблицы В.3 приложения В возможно построить эффективное множество возможных совокупных портфелей ценных бумаг (рисунок 3.9).
Теперь необходимо определить местоположение оптимального портфеля, то есть выбрать приемлемое соотношение доходности и риска.
Так как банки являются организациями, не склонными к большому риску, то искомая точка должна находиться в левой части кривой – с меньшим риском. Начиная с некоторого момента, кривая приобретает все более пологий вид, что свидетельствует о том, что при дальнейшем увеличении доходности риск увеличивается нарастающими темпами. Поэтому, целесообразно за оптимальный портфель для данного инвестора принять портфель с доходностью 15,2%.
Таким образом, в данном портфеле облигации имеют 45%, а акции представлены 55%.
Рисунок 3.9 – Эффективное множество совокупных портфелей
До сих пор состав портфеля определялся в относительных величинах. Для последующей оценки результатов необходимы абсолютные значения. Поэтому необходимо определить количественный состав портфелей. Для этого необходимо выбрать сумму инвестируемых средств.
В период, когда банк «Дорожник» активно занимался операциями купли-продажи ценных бумаг, сумма инвестируемых средств доходила до 15% от валюты баланса. На начало 2002 года валюта баланса составляла около 340 млн. рублей. Считаю целесообразным взять за размер инвестирования сумму в 5 млн. рублей, что составляет приблизительно 1,5% валюты баланса и соизмеримо с величиной статей отчетности.
Таким образом, учитывая, что 45% средств инвестируется в ОФЗ, а 55% – в акции, получим, что 2250 тыс. руб. должно быть направлено на покупку ОФЗ, а оставшаяся часть (2750 тыс. руб.) – на покупку акций.
Количество облигаций для покупки рассчитывается по формуле:
, (41)
гдеKi– количество ценных облигаций, шт.;
di– доля портфеля, занимаемая облигацией;
S– сумма средств, инвестируемая в портфель, руб.;
P%– цена облигации, в % от номинала;
N– номинал облигации, руб.
Данные для расчета и результаты сведены в таблицу 3.9.
Таблица 3.9 – Расчет количества облигаций для покупки
Облигация
|
Доля инвестиций |
Сумма инвестируемых средств, руб. |
Номинал, руб. |
Цена на 01.04.02, % от номинала |
Количество, шт. |
ОФЗ 26001 |
0,183 |
411750
|
1000
|
95,38
|
456 |
ОФЗ 27004
|
0,018 |
40500
|
10
|
100,23
|
4063 |
ОФЗ 27005
|
0,126 |
283500
|
10
|
98,95
|
28364 |
ОФЗ 27007
|
0,027 |
60750
|
10
|
97,79
|
6248 |
ОФЗ 27008
|
0,030 |
67500
|
10
|
96,57
|
7116 |
ОФЗ 27009
|
0,044 |
99000
|
10
|
96,66
|
10385 |
ОФЗ 27010
|
0,031 |
69750
|
10
|
95,36
|
7386 |
ОФЗ 27012
|
0,540 |
1217250
|
10
|
91,76
|
137922 |
Итого |
1,000
|
2250076
|
|
|
201940
|
Так как количество облигаций округлялось до целого, сумма инвестируемых средств немного отличается от первоначальной. Таким образом стоимость портфеля облигаций на 01.04.2002 составляет 2250076,42 руб.
Для определения количества акций, включаемого в портфель, необходимо их цены перевести в рубли, так как котировки акций в РТС выражены в долларах США. Курс доллара США на 01.04.2002, установленный ЦБ РФ, составлял 31,1192 рубля. Количество акций в портфеле определяется аналогично облигациям, но в знаменателе берется рыночная цена в рублях без номинала. В таблице 3.10 отражены результаты расчетов.
Таблица 3.10 – Расчет количества акций для покупки в портфель
Акция
|
Доля инвестиций |
Сумма инвестируемых средств, руб. |
Цена на 01.04.2002 |
Количество, шт. |