Страница: 4 из 9 <-- предыдущая следующая --> |
E | T1 | T2 |
S1 | 0.4 | 0.6 |
S2 | 0.7 | 0.3 |
Какую же из стратегий считать наилучшей? Пока мы не оговорим значимость каждой из целей, не укажем ихвеса, — спорить бесполезно! Вот если бы нам было известно, что первая цель, к примеру, в 3 раза важнее второй, то тогда
можно учесть ихотносительные веса— скажем величинами 0.75 для первой и 0.25 для второй. При таких условияхсуммарные эффективностистратегий (по отношению ко всем целям) составят:
для первой E1 = 0.4·0.70 + 0.6·0.30 = 0.28 + 0.18 = 0.46;
для второй E2 = 0.8·0.70 + 0.2·0.25 = 0.56 + 0.05 = 0.61;
так что ответ на вопрос о выборе стратегии далеко не очевиден.
Итак, критерий эффективности системы при наличии нескольких целей приходится выражать через эффективности отдельных стратегий виде: Es = S St · Ut {3 - 8}
т. е. учитывать веса отдельных целей Ut .
Если вы внимательно следили за рассуждениями при рассмотрении примера {3-2}, то сейчас можете сообразить, что по сути дела там речь шла о двух целях. С одной стороны, мы хотели бы иметь как можноменьшиепартии — их дешевле хранить (мал срок хранения). с другой стороны, нам были желательныбольшиепартии, поскольку при этом меньше затраты на запуск партий в производство. Если бы мы перебирали все 365 возможных стратегий (от смены партии каждый день до одной в год), то, конечно же, нашли бы оптимальную стратегию со сменой партий каждые два месяца. Другое дело, что в нашем распоряжении былааналитическая модельсистемы (формула суммарных затрат).
Так вот — весовые коэффициенты целей в той модели былиравнымии мы их могли не замечать при поиске минимума затрат. Ну, а что делать, если “важность” целей приходится измерять не по шкале Int или Rel, т. е. в числовом виде , а по шкале Ord ? Иными словами — откуда берутся весовые коэффициенты целей?
Очень редко весовые коэффициенты определяются однозначно по “физическому смыслу” задачи системного анализа. Чаще же всего их отыскание можно называть “назначением”, “придумыванием”, “предсказанием” — т. е. никак не "научными" действиями.
Иногда, как ни странно это звучит, весовые коэффициенты назначаются путем голосования — явного или тайного. Дело в том, что в ситуациях, когда нет числового метода оценки веса цели, реальным выходом из положения является использованиенакопленногоопыта.
Нередко задает весовые коэффициенты непосредственно ЛПР, но чаще его опыт управления подсказывает: одна голова — хорошо, а много умных голов — куда лучше. Принимается особое решение — использоватьметод экспертных оценок..
Суть этого метода достаточно проста. Требуется четко оговорить все цели функционирования системы и предложить группе лиц, высоко компетентных в данной отрасли (экспертов) хотя бы расположить все цели по значимости, по “призовым местам” или, на языке ТССА, по рангам.
Высший ранг (обычно 1) означает наибольшую важность (вес) цели, следующий за ним — несколько меньший вес и т. д. Специальный раздел непараметрической статистики — теорияранговой корреляции, позволяет проверить гипотезы о значимости полученной от экспертов информации. Развитие ранговой корреляции, ее другой раздел, позволяет устанавливать согласие, согласованность мнений экспертов илиранговую конкордацию.
Это особо важно в случаях, когда не только возникла нужда использовать мнения экспертов, но и существует сомнение в их компетентности.
Экспертные оценки, ранговая корреляция и конкордация
Пусть в процессе системного анализа нам пришлось учитывать некоторую величину U , измерение которой возможно лишь по порядковой шкале (Ord). Например, нам приходится учитывать 10 целей функционирования системы и требуется выяснить их относительную значимость, удельные веса.
Если имеется группа лиц, компетентность которых в данной области не вызывает сомнений, то можно опросить каждогоЕсли имеется группа лиц, компетентность которых в данной области не вызывает сомнений, то можно опросить каждого изэкспертов,предложив им расположить цели по важности или “проранжировать” их. В простейшем случае можно не разрешать повторять ранги, хотя это не обязательно — повторение рангов всегда можно учесть.
Результаты экспертной оценки в нашем примере представим таблицей рангов целей:
Таблица 3.2
Эксперты |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Сумма |
A |
3 | 5 | 1 | 8 | 7 | 10 | 9 | 2 | 4 | 6 | 55 |
B |
5 | 1 | 2 | 6 | 8 | 9 | 10 | 3 | 4 | 7 | 55 |
Сумма рангов |
8 | 6 | 3 | 14 | 15 | 19 | 19 | 5 | 8 | 13 | |
Суммарный ранг |
4.5 | 3 | 1 | 7 | 8 | 9.5 | 9.5 | 2 | 4.5 | 6 | 55 |
Итак, для каждой из целей Ti мы можем найти сумму рангов, определенных экспертами, и затем суммарный илирезультирующийранг цели Ri . Если суммы рангов совпадают — назначается среднее значение.
Метод ранговой корреляции позволяет ответить на вопрос — насколько коррелированны, неслучайны ранжировки каждого из двух экспертов, а значит — насколько можно доверять результирующим рангам? Как обычно, выдвигается основная гипотеза — оботсутствии связимежду ранжировками и устанавливается вероятность справедливости этой гипотезы. Для этого можно использовать два подхода: определение коэффициентов ранговой корреляции Спирмэна или Кендэлла.
Более простым в реализации является первый — вычисляется значение коэффициента Спирмэна
Rs = 1 - ; {3 - 9}
где di определяются разностями рангов первой и второй ранжировок по n объектов в каждой.
В нашем примере сумма квадратов разностей рангов составляет 30, а коэффициент корреляции Спирмэна около 0.8, что дает значение вероятности гипотезы о полной независимости двух ранжировок всего лишь 0.004.
При небходимости можно воспользоваться услугами группы из m экспертов, установить результирующие ранги целей, но тогда возникнет вопрос о согласованности мнений этих экспертов иликонкордации.
Пусть у нас имеются ранжировки 4 экспертов по отношению к 6 факторам, которые определяют эффективность некоторой системы.
Таблица 3.3
Факторы --> Эксперты | 1 | 2 | 3 | 4 | 5 | 6 | Сумма |
A | 5 | 4 | 1 | 6 | 3 | 2 | 21 |
B | 2 | 3 | 1 | 5 | 6 | 4 | 21 |
C | 4 | 1 | 6 | 3 | 2 | 5 | 21 |
D | 4 | 3 | 2 | 3 | 2 | 5 | 21 |
Сумма рангов | 15 4 | 11 2 | 10 1 | 19 6 | 12 3 | 17 5 | 84 |
Отклонение суммы от среднего | +1 1 | -3 9 | -4 16 | +5 25 | -2 4 | +3 9 | 0 64 |
Заметим, что полная сумма рангов составляет 84, что дает в среднем по 14 на фактор.
Для общего случая n факторов и m экспертов среднее значение суммы рангов для любого фактора определится выражением
D {3 - 10}
Теперь можно оценить степень согласованности мнений экспертов по отношению к шести факторам. Для каждого из факторов наблюдается отклонение суммы рангов, указанных экспертами, от среднего значения такой суммы. Поскольку сумма этих отклонений всегда равна нулю, для их усреднения разумно использовать квадраты значений.
В нашем случае сумма таких квадратов составит S= 64, а в общем случае эта сумма будет наибольшей только при полном совпадении мнений всех экспертов по отношению ко всем факторам:
S max {3 - 11}
М. Кэндэллом предложен показатель согласованности иликоэффициент конкордации,определяемый как
{3 - 12}
В нашем примере значение коэффициента конкордации составляет около 0.229, что при четырех экспертах и шести факторах достаточно, чтобы с вероятностью не более 0.05 считать мнения экспертов несогласованными. Дело в том, что как разслучайностьранжировок, их некоррелированность просчитывается достаточно просто. Так для нашего примера указанная вероятность соответствует сумме квадратов отклонений S= 143.3 , что намного больше 64.
В заключение вопроса об особенностях метода экспертных оценок в системном анализе отметим еще два обстоятельства.
В первом примере мы получили результирующие ранги 10 целей функционирования некоторой системы. Как воспользоваться этой результируюзей ранжировкой? Как перейти от ранговой ( Ord ) шкалы целей к шкале весовых коэффициентов — в диапазоне от 0 до 1?
Здесь обычно используются элементарные приемы нормирования. Если цель 3 имеет ранг 1, цель 8 имеет ранг 2 и т. д., а сумма рангов составляет 55, то весовой коэффициент для цели 3 будет наибольшим и сумма весов всех 10 целей составит 1.
Вес целипридется определять как
(11-1) / 55 для 3 цели;
(11-2) / 55 для 8 цели и т. д.
При использовании групповой экспертной оценки можно не только выяснять мнение экспертов о показателях, необходимых для системного анализа. Очень часто в подобных ситуациях используют так называемыйметод Дельфы(от легенды о дельфийском оракуле).
Опрос экспертов проводят в несколько этапов, как правило — анонимно. После очередного этапа от эксперта требуется не просто ранжировка, но и ее обоснование. Эти обоснования сообщаются всем экспертам перед очередным этапом без указания авторов обоснований.
Имеющийся опыт свидетельствует о возможностях существенно повысить представительность, обоснованность и, главное, достоверность суждений экспертов. В качестве “побочного эффекта” можно составить мнение о профессиональности каждого эксперта.
Моделирование системы в условиях неопределенности
Как уже отмечалось в первой части нашего курса, в большинстве реальных больших систем не обойтись без учета “состояний природы” — воздействийстохастическоготипа, случайных величин или случайных событий. Это могут быть не тольковнешниевоздействия на систему в целом или на отдельные ее элементы. Очень часто ивнутренниесистемные связи имеют такую же, “случайную” природу.
Важно понять, что стохастичность связей между элементами системы и уж тем более внутри самого элемента (связь “вход-выход”) является основной причиной риска выполнить вместосистемного анализасовершенно бессмысленную работу, получить в качестве рекомендаций по управлению системой заведомо непригодные решения.
Выше уже оговаривалось, что в таких случаях вместо самой случайной величины X приходится использовать ее математическое ожи-дание Mx . Все вроде бы просто —не знаем,такожидаем. Но насколько оправданы наши ожидания? Какова уверенность или какова вероятность ошибиться?
Такие вопросы решаются, ответы на них получить можно — но для этого надо иметь информацию о законе распределения СВ. Вот и приходится на данном этапе системного анализа (этапе моделирования) заниматься статистического исследованиями, пытаться получить ответы на вопросы:
·А не является ли данный элемент системы и производимые им операции “классическими”?
·Нет ли оснований использовать теорию для определения типа распределения СВ (продукции, денег или информационных сообщений)? Если это так — можно надеяться на оценки ошибок при принятии решений, если же это не так, то приходится ставить вопрос иначе.
·А нельзя ли получить искомое распределение интересующей нас СВ из данных эксперимента? Если этот эксперимент обойдется дорого или физически невозможен, или недопустим по моральным причинам, то может быть “для рагу из зайца использовать хотя бы кошку” — воспользоваться апостериорными данными, опытом прошлого или предсказаниями на будущее, экспертными оценками?
Если и здесь нет оснований принимать положительное решение, то можно надеяться еще на один выход из положения.
Не всегда, но все же возможно использовать текущее состояние уже действующей большой системы, ее реальную “жизнь” для полученияглобальных показателейфункционирования системы.
Этой цели служат методы планирования эксперимента, теоретической и методологической основой которых является особая область системного анализа — т. н. факторный анализ, сущность которого будет освещена несколько позже.
Моделирование систем массового обслуживания
Достаточно часто при анализе экономических систем приходится решать т. н. задачи массового обслуживания, возникающие в следующей ситуации. Пусть анализируется система технического обслужи-вания автомобилей, состоящая из некоторого количества станций различной мощности. На каждой из станций (элементе системы) могут возникать, по крайней мере, две типичных ситуации:
Страница: 4 из 9 <-- предыдущая следующая --> |
© 2007 ReferatBar.RU - Главная | Карта сайта | Справка |