РефератБар.ру: | Главная | Карта сайта | Справка
Статистические таблицы и статистические графики - основные способы наглядного изображения данных. Реферат.

Разделы: Статистика | Заказать реферат, диплом

Полнотекстовый поиск:




     Страница: 5 из 5
     <-- предыдущая следующая -->

Перейти на страницу:
скачать реферат | 1 2 3 4 5 







Изображение динамики валового сбора зерновых культур на координатной сетке с неразрывной шкалой значений, начинающихся от нуля, вряд ли целесообразно, так как 2/3 поля диаграммы остаются неиспользованными и ничего не дают для выразительности изображения. Поэтому в данных условиях рекомендуется строить шкалу без вертикального нуля, т.е. шкала значений разрывается недалеко от нулевой линии и на диаграмму попадает лишь часть всего возможного поля графика. Это не приводит к искажениям в изображении динамики явления, и процесс его изменения рисуется диаграммой более четко (рис. 18).

Нередко на одном линейном графике приводится несколько кривых, которые дают сравнительную характеристику динамики различных показателей или одного и того же показателя.
Примером графического изображения сразу нескольких показателей является рис. 19.

Рис. 18. Динамика валового сбора зерновых культур в регионе за 1985 – 1994 гг.

Рис. 19. Динамика производства чугуна и готового проката в регионе за 1985 – 1994 гг.

Однако на одном графике не следует помещать более трех – четырех кривых, так как большое их количество неизбежно осложняет чертеж и линейная диаграмма теряет наглядность.
В некоторых случаях нанесения на один график двух кривых дает возможность одновременно изобразить динамику третьего показателя, если он является разностью первых двух. Например, при изображении динамики рождаемости и смертности площадь между двумя кривыми показывает величину естественного прироста или естественной убыли населения.
Иногда необходимо сравнить на графике динамику двух показателей, имеющих различные единицы измерения. В таких случаях понадобится не одна, а две масштабные шкалы. Одну из них размещают справа, другую – слева.
Однако такое сравнение кривых не дает достаточно полной картины динамики этих показателей, так как масштабы произвольны. Поэтому сравнение динамики уровня двух разнородных показателей следует осуществлять на основе использования одного масштаба после преобразования абсолютных величин в относительные. Примером такой линейной диаграммы является рис. 20.
Линейные диаграммы с равномерной шкалой имеют один недостаток, снижающий их познавательную ценность: равномерная шкала позволяет измерять и сравнивать только отраженные на диаграмме абсолютные приросты или уменьшения показателей на протяжении исследуемого периода. Однако при изучении динамики важно знать относительные изменения исследуемых показателей по сравнению с доступным уровнем или темпы их изменения. Именно относительные изменения экономических показателей в динамике искажаются при их изображении на координатной диаграмме с равномерной вертикальной шкалой. Кроме того, в обычных координатах теряет всякую наглядность и даже становится невозможным изображение для рядов динамики с резко изменяющимися уровнями, которые обычно имеют место в динамических рядах за длительный период времени.

В этих случаях следует отказаться от равномерной шкалы и положить в основу графика полулогарифмическую систему. Основная идея полулогарифмической системы состоит в том, что в ней равным линейным отрезкам соответствуют равные значения логарифмов чисел. Такой подход имеет преимущество: возможность уменьшения размеров больших чисел через их логарифмические эквиваленты. Однако с масштабной шкалой в виде логарифмов график малодоступен для понимания. Необходимо рядом с логарифмами, обозначенными на масштабной шкале, проставить сами числа, характеризующие уровни изображаемого ряда динамики, которые соответствуют указанным числам логарифмов. Такого рода графики носят название графиков на полулогарифмической сетке.
Полулогарифмическое сеткой называется сетка, в которой на одной оси нанесен линейный масштаб, а на другой – логарифмический. В данном случае логарифмический масштаб наносится на ось ординат, а на оси абсцисс располагают равномерную шкалу для отсчета времени по принятым интервалам (годам, кварталам, месяцам, дням и пр.).
Техника построения логарифмической шкалы последующая (рис. 21).

Логарифмы чисел Числа



Рис. 21. Схема логарифмического масштаба
Необходимо найти логарифмы исходных чисел, начертить ординату и разделить ее на несколько равных частей. Затем нанести на ординату (или равную ей параллельную линию) отрезки, пропорциональные абсолютным приростам этих логарифмов. Далее записать соответствующие логарифмы чисел и их антилогарифмы, например (0,000; 0,3010; 0,4771; 0,6021; …; 1,000, что дает 1, 2, 3, 4, …, 10). Полученные антилогарифмы окончательно дают вид искомой шкалы на ординате.
Приведем пример логарифмического масштаба.
Допустим, что надо изобразить на графике динамику производства электроэнергии в регионе за 1965 – 1994 гг., за эти годы оно выросло в 9,1 раза. С этой целью находим логарифмы для каждого уровня ряда (табл. 12).


Таблица 12
Динамика производства электроэнергии в регионе
за 1965 – 1994 гг. (млрд. кВт/ч)



Год

Yi

LgYi

Год

Yi

LgYi


1965


170


2,23


1985


1039


3,02


1970


292


2,46


1990


1294


3,11


1975


507


2,70


1994


1544


3,19


1980


741


2,84



Определив минимальное и максимальное значение логарифмов производства электроэнергии, построим масштаб с таким расчетом, чтобы все данные разместились на графике.

Учитывая масштаб, находим соответствующие точки, которые соединим прямыми линиями, в результате получим график (рис. 22) с использованием логарифмического масштаба на оси ординат. Он называется диаграммой на полулогарифмической сетке. Полной логарифмической диаграммой он станет в том случае, если по оси абсцисс будет построен логарифмический масштаб. В рядах динамики это никогда не применяется, так как логарифмирование времени лишено всякого смысла.
Рис. 22. Динамика производства электроэнергии в регионе за 1965 – 1994 гг.

Применяя логарифмический масштаб, можно без всяких вычислений характеризовать динамику уровня. Если кривая на логарифмическом масштабе несколько отклонена от прямой и становится вогнутой к оси абсцисс, значит, имеет место прямой – стабильность темпов; если она отклоняется от прямой в сторону, выпуклую к оси абсцисс, изучаемое явление имеет тенденцию к росту с увеличивающимися темпами.
Динамику изображают и
радиальные диаграммы , строящиеся в полярных координатах. Радиальные диаграммы преследуют цель наглядного изображения определенного ритмического движения во времени. Чаще всего эти диаграммы применяются для иллюстрации сезонных колебаний. Радиальные диаграммы разделяются на замкнутые и спиральные . По технике построения радиальные диаграммы отличаются друг от друга в зависимости от того, что взято в качестве пункта отсчета – центр круга или окружность.
Замкнутые диаграммы отражают внутригодичный цикл динамики какого – либо одного года. Спиральные диаграммы показывают внутригодичный цикл динамики за ряд лет.
Построение замкнутых диаграмм сводится к следующему: вычерчивается круг, среднемесячный показатель приравнивается к радиусу этого круга. Затем весь круг делится на 12 радиусов, которые на графике приводятся в виде тонких линий. Каждый радиус обозначает месяц, причем расположение месяцев аналогично циферблату часов: январь – в том месте, где на часах 1, февраль – 2, и т.д. На каждом радиусе делается отметка в определенном месте согласно масштабу исходя из данных за соответствующий месяц. Если данные превышают среднемесячный уровень, отметка делается за пределами окружности на продолжении радиуса. В приведенном примере (рис. 23) R = 44,8 тыс.т., длина радиуса – 3,0 см. Следовательно, 1 см = 44,8 : 3,0»15 тыс.т. Данная замкнутая диаграмма наглядно показывает, что производство мяса подвергнуто сезонным колебаниям. Минимум

Рис. 23. Сезонные колебания производства мяса в одном из регионов России в 1994 г.

производства мяса приходится на апрель, май, затем наблюдается медленное его повышение к августу, резкий подъем в сентябре, октябре и опять спад в декабре, январе. Если же в качестве базы для отсчета взять не центр круга, а окружность, то диаграммы называются
спиральными .
Построение спиральных диаграмм отличается от замкнутых тем, что в них декабрь одного года соединяется не с январем данного же года, а с январем следующего года. Это дает возможность изобразить весь ряд динамики в виде спирали. Особенно наглядна такая диаграмма, когда наряду с сезонными изменениями происходит неуклонный рост из года в год (рис. 24).

Рис. 24. Продажа пива в розничной торговле в городе за 1992 – 1994 гг.
1


Статистические таблицы и статистические графики – основные способы
наглядного изображения статистических данных

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

1. СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ



2. Долгушевский Ф.Г., Козлов В.С., Полушин М.И., Эрлих Я.М. Общая теория статистики. – М.: Статистика, 1967. – 384 с.
3. Колмогоров А. Предисловие к книге Г. Лебега «Общие величины». – М.: Госстатиздат, 1938. – 4 с.
4. Лившиц Ф.Д. Статистические таблицы. – М.: Госстатиздат, 1958. – 139 с.
5. Маслов П.П. Техника работы с цифрами. – М.: Статистика, 1969. – 120 с.
7. Бызов Л.А. Графические методы в статистике, планировании и учете: Пособие для экономических вузов и для самообразования. – М.: Госпланиздат, 1940.
8. Герчук Я.П. Графические методы в статистике. – М.: Статистика, 1968.
9. Курс лекций по общей теории статистики/Под ред. В.Е. Овсиенко. – М.: МЭСИ, 1976. – 231 с.
10. Ланге О., Банасиньский А. Теория статистики. – М.: Статистика, 1971. – 399 с.

Кан Ю. Описательная и индивидуальная статистика. – М.: Финансы и статистика, 1981.



В зависимости от применяемой схемы отбора различают:
§Повторный;
§Бесповторный.
Каждый из видов отбора может осуществляться следующими способами:
1. Собственно случайным;
2. Механическим;
3. Типическим (стратефицированным);
4. Серийным (гнездовым);
5. Комбинированным.

7. Организация отбора различными способами и оценка надежности полученных результатов.
Различные способы отбора отличаются неодинаковой методикой формирования выборки и различными алгоритмами расчета ошибок репрезентативности.
Собственно случайный отборорганизуется таким образом, чтобы у всех единиц генеральной совокупности были равные возможности попасть в выборку. Это обеспечивается отбором по жребию, по таблицам случайных чисел или с помощью генераторов случайных чисел. Независимо от того, как будут отбирать единицы, их обязательно нумеруют. При отборе по жребию эти номера наносятся на карточки, шары и т.п., которые затем тщательно перемешиваются и из них наугад отбирается количество карточек, равное численности отбора.
Таблица случайных чисел это матрица 4 или 5 чисел, каждая цифра которой не зависит от остальных цифр данного числа и других чисел. В зависимости от численности выборки из таблицы выбираются одно, двух, трех или четырехзначное число. Числа можно отбирать по столбцам или строкам таблицы (начиная с любой строки или столбца) заранее заданным алгоритмом отбора.
В компьютерах и некоторых калькуляторах имеется генератор случайных чисел, который выводит на экран случайные числа.
Средняя ошибка собственно случайного повторного или бесповторного отбора определяется по формуле: см. пункт (2).
Механический отборэто направленная выборка из совокупности, предварительно упорядоченной по существующему или несуществующему признаку.
На первом этапе генеральная совокупность упорядочивается по какому-либо признаку. Независимо от признака при механическом отборе устанавливается пропорция отбора по формуле: N/n.
Если совокупность сгруппирована по несущественному признаку, то безразлично, с какой единицы начинать отбор.
Если совокупность сгруппирована или упорядочена по существенному признаку, то отбор следует начинать с середины первой группы.
Средняя ошибка механического отбора рассчитывается по формулам для случайного отбора. Это справедливо, когда отбор производился из совокупности, упорядоченной по несущественному признаку.
Если же совокупность была упорядочена по существенному признаку, то такой способ расчета несколько завышает среднюю ошибку выборки.
В данном случае можно было использовать среднюю из внутригрупповых дисперсий, а не общую дисперсию.
Типическая выборка(стратефицированная). При этой выборке генеральная совокупность вначале разбивается на типичные группы (страты), из которых производится случайный отбор единиц. Такая выборка гарантирует представительство всех типичных групп выборочной совокупности, что снижает ошибку выборки. Существуют пропорциональный и непропорциональный способы типического отбора.
При пропорциональном способе из каждой группы отбирается число единиц пропорциональное либо численности группы, либо внутригрупповой вариации изучаемого признака.
При типическом повторном отборе пропорциональном численности
групповая средняя ошибка выборки определяется по формуле:
- средняя из внутригрупповых дисперсий;
- внутригрупповая дисперсия;
nj- численность соответствующих типических групп.

- средняя ошибка выборки для бесповторного отбора;

Если исследуется доля единиц совокупности, обладающих изучаемым признаком, то средние ошибки и дисперсия:

- для повторного отбора;

- для бесповторного отбора.
Пример: Для изучения средних цен одного блюда в предприятии общественного питания произведена 10% выборка пропорциональная численности групп.




Предприятия

Численность выборки,

Средняя цена,

Внутригрупповая дисперсия,


Закусочные


21

19,3

68,2

405,3

1432,2

Кафе

24

42,5

151,45

1020

3634,8

Рестораны

15

63,2

342,5

948

5137,5


60

39,56


2373,3

10204,5



Для расчетов нужно рассчитать среднюю из внутригрупповых дисперсий:

Предельная ошибка типической выборки с p=0,954
Доверительный интервал средней цены блюда

В 954 случаях из 1000 средняя цена блюда в генеральной совокупности будет не ниже 36 руб. 36 коп. и не выше 42 руб. 76 коп.
Оптимальная численность типической выборки пропорциональна численности групп, определяется по формулам:

- для повторного отбора;

- для бесповторного отбора.

Каковая должна быть численность выборки, чтобы с p=0,954 можно было бы утверждать, что предельная ошибка не превысит 3 руб. 50 коп.

Численность, подлежащая отбору из отдельных типических групп, рассчитывается по формуле:

Из 600 предприятий – 210 закусочных, 240 кафе, 150 ресторанов.

Наиболее из точных пропорциональных способов типического отбора является отбор пропорциональной вариации значений признака в группах. Данный отбор целесообразен при наличии генеральных внутригрупповых дисперсий. Это возможно, когда выборка осуществляется для контроля данных сплошного наблюдения или когда имеются данные предшествующего сплошного наблюдения.
Численность выборочных групп определяется по формуле:
- численность выборки из j-й типической группы;
- генеральная внутригрупповая дисперсия;
- численность составляющих типических групп в генеральной совокупности.

Средняя ошибка выборки бесповторного типического отбора пропорциональна вариации признака в группах. Определяется по формуле:

Данный способ отбора дает ошибку меньшую, чем отбор пропорциональный численности групп.
Наиболее общим случаем является непропорциональный типический отбор. При произвольных пропорциях формирования типических выборочных групп средняя ошибка выборки рассчитывается по формуле:
- средние ошибки выборки в каждой типической группе;
- численность соответствующих типических групп.

При этом, ошибки средние выборки по группам определяются по формулам:

- внутригрупповая дисперсия.

- для повторного отбора;

- для бесповторного отбора.

Серийный или гнездовой отбор – это случайный выбор групп единиц с последующим сплошным наблюдением внутри отобранных серий. Данная выборка применяется преимущественно для контроля качества товаров, когда целесообразно вскрывать и исследовать отдельные упаковки. Это разновидность направленного отбора, способствующего снижению ошибки выборки. Благодаря сплошному исследованию гнезд частные дисперсии не оказывают влияние на ошибку репрезентативности, которая зависит только от вариации серийных средних, то есть от межгрупповой дисперсии, определяется по формуле:
- частная выборочная дисперсия;
- общая средняя серийной выборки;
- число отобранных серий.

Средняя ошибка серийной выборки определяется по формулам:

- для повторного отбора;

- для бесповторного отбора.

Пример: при проверке качества обуви партии 500 коробов отобрано в случайном порядке и проверено 10 пар обуви. Число стандартных пар в коробах распределялось следующим образом.



№ коробов

1

2

3

4

5678910




Итого

Число стандартных
пар в
коробе (
).

48

45

50

49474850464849




480


2304

2025

2500

2401220923042500211623042401




     Страница: 5 из 5
     <-- предыдущая следующая -->

Перейти на страницу:
скачать реферат | 1 2 3 4 5 

© 2007 ReferatBar.RU - Главная | Карта сайта | Справка