РефератБар.ру: | Главная | Карта сайта | Справка
Статистическое прогнозирование урожайности зерновых культур. Реферат.

Разделы: Статистика | Заказать реферат, диплом

Полнотекстовый поиск:




     Страница: 2 из 5
     <-- предыдущая следующая -->

Перейти на страницу:
скачать реферат | 1 2 3 4 5 






Большинство статистиков решает задачу определения параметров тренда способом наименьших квадратов, минимизируя сумму квадратов отклонений отдельных уровней от тренда. Существуют методы построения «нормальных уравнений» способом наименьших квадратов для прямой линии, парабол второго и третьего порядка, экспоненциальной кривой. При этом целесообразно переносить начало отчета времени в середину выравниваемого динамического ряда, система нормальных уравнений заметно упрощаются и уменьшается объем вычислительной работы.
Другим приемом построения систем нормальных уравнений методом наименьших квадратов для тех типов уравнений тренда, которые приводимы к линейному виду, является замена переменных.
Среднегодовые цепные и базисные показатели динамики хорошо описывают развитие явления во времени, когда динамические ряды меняются плавно. Для рядов, подверженных значительной колеблемости эти показатели могут сильно искажать действительную тенденцию, так как величина их определяется значением уровней динамического ряда, стоящих на концах изучаемого периода. Поэтому применяют другие показатели, в меньшей степени зависящие от значений, стоящих на концах ряда. Эти показатели исчисляются на основе аналитического выравнивания. Под аналитическим выравниванием понимают оптимальное в смысле заданного критерия выравнивание динамического ряда с обязательным аналитическим выражением тренда в виде некоторой кривой. Так, для выражения среднегодового прироста, полученного с помощью аналитического выравнивания и называемого выровненным приростом, применяют только линейное уравнение, а для выражения показателя среднегодового коэффициента и темпа роста служит выравнивание ряда по показательной кривой. Если развитие экономического процесса происходит с ускорением, целесообразно наряду со средней скоростью исчислять и величину среднегодового ускорения, для чего динамический ряд выравнивают по параболе второго порядка.
Для определения параметров тренда в сильно колеблющемся ряду применяют метод многократного аналитического выравнивания, так как чем сильнее колеблемость и чем короче динамический ряд, тем больше влияние случайного распределения отклонений от тренда искажает значения параметров, полученных при однократном аналитическом выравнивании.
Показатели эффективности производства и влияющие на них факторы могут находиться в стохастической или функциональной связи. В первом случае для их изучения применяются вероятностные методы, во втором – методы функционального анализа, к котором относится индексный анализ. Он изучает изменение в динамике показателей под влиянием факторов, которые являются составными частями показателя и служит для изучения односторонних причинных связей, отражая на самом деле не причинные, а структурные или объемные изменения показателя и выражая тем самым следствия действительных причин.

2.2 Анализ колеблемости уровней динамического ряда

Колебаниями уровней динамических рядов называют их отклонения от тренда, выражающего тенденцию изменения уровней. Колебания – процесс, протекающий во времени. Однако существует понятие «вариации колеблемости», т.е. различие показателей колеблемости за один и тот же период между территориями и между объектами. Сельскохозяйственному производству наряду с сезонной колеблемостью присуща колеблемость уровней урожайности и валового сбора в разные годы. Поэтому одной из важнейших задач производства в сельском хозяйстве является задача уменьшения колеблемости объема сельскохозяйственной продукции в разные годы.
В любой отрасли производства и любом социальном процессе появляется динамическое единство необходимости и случайности, служащее общим причинным обоснованием существования колеблемости.
Основными задачами статистического изучения колеблемости производственных и социальных процессов являются следующие:
-измерение силы колебаний;
-изучение типа колебаний, разложение сложной колеблемости на разнородные составляющие;
-исследование изменений колеблемости во времени, динамики колебаний;
-изучение вариации колеблемости в пространственной или иной совокупности объектов;
-изучение факторов колеблемости и ее статистико-математическое моделирование.
Основными абсолютными показателями, характеризующими силу колебаний, являются:
1) амплитуда, или размах колебаний – это разность между алгебраическим наибольшим за период отклонением от тренда и наименьшим алгебраическим отклонением.


, (1)

2) Среднее линейное отклонение (по модулю) рассчитывается по формуле:

, (2)

гдеЕt –отклонения фактических уровней от тренда
N –число уровней,
3) Основным абсолютным показателем колеблемости считают среднее квадратическое отклонение. Если рассматриваемый период является выборкой, по которой делается оценка генеральной величины колеблемости в данном процессе для целей прогнозирования (экстраполяции), то оценку генерального среднего квадратического отклонения вычисляют по формуле:

, (3)

гдеР– число параметров тренда, включая свободный член.

В число показателей колеблемости помимо абсолютных должны входить и относительные показатели, роль которых заключается в том, что лишь в них выражается сравнимая для различных рядов мера интенсивности колебательного процесса. Относительные показатели строятся как отношения абсолютных показателей к среднему уровню ряда динамики за тот же период. Так, на основе среднего квадратического отклонения можно вычислить относительный показатель – коэффициент колеблемости.

, (4)

По отношению к урожайности на основе опыта массового измерения колебаний по разным культурам и территориям при
колеблемость можно характеризовать как слабую; при
как умеренную; при
– как сильную; при
– как очень сильную.
Система показателей колеблемости должна быть дополнена показателями устойчивости как свойства, противоположного колеблемости.
Коэффициентом устойчивости называют величину равную
(5), или дополнение коэффициента колеблемости до единицы.
Существенной характеристикой колеблемости является тип колебаний. Первичных, или «чистых», колебаний в динамических рядах можно выделить три: «пилообразная», или «маятниковая», колеблемость, при которой знаки отклонений от тренда чередуются строго поочередно; долгопериодическая, или циклическая, при которой несколько уровней подряд отклоняются от тренда в одну сторону, а затем несколько уровней – в противоположную сторону и т.д.; случайно распределенная во времени, при которой равновероятна любая последовательность знаков и величины отклонений от тренда.
Ни один из этих типов, как правило, не встречается на практике в чистом виде, но обычно один из типов является преобладающим для определенного процесса. Знание типа преобладающие колеблемости имеет большое практическое значение для прогнозирования и для разработки мероприятий по уменьшению колебаний либо по преодолению их отрицательных последствий. Так, при преобладании «пилообразной» колеблемости требуется значительно меньший страховой запас, чем при равной по интенсивности долгопериодической колеблемости, так как недобор продукции при первой из них сразу же в следующем году компенсируется ее повышением над средним уровнем тренда, а при втором типе несколько лет с недобором продукции следуют один за другим.
Разные типы колеблемости объясняются, как правило, разними причинами. Так «пилообразная» колеблемость – автоколебательным причинным механизмом. Долгопериодическая колеблемость обычно связана с циклами внешних факторов: солнечная активность, смена времени года, гипотетические циклы метеорологических процессов. Случайную колеблемость обычно рассматривают как наложение или «интерференцию» многих разных по характеру и длине цикла колебательных процессов.
Для исследования типа колеблемости предложен ряд методов. Так, М.Дж. Кондэл предложил критерий «поворотных точек», или локальных экстремумов, в ряду отклонений от тренда. Им доказано, что при случайном распределении во времени колебаний число локальных экстремумов в среднем равно:

, (6).

при среднем квадратическом отклонении

(7)

При «пилообразной» колеблемости число «поворотных точек» будет точно равноN-2,а при долгопериодической – удвоенному числу циклов, уменьшающихся на длине периодаN, поскольку каждый цикл содержитaэкстремума. Измерив фактическое число «поворотных точек» и сравнив его с ожидаемым при различных типах колебаний можно определить преобладающий тип колеблемости.
Другой метод определения типа колеблемости, при котором учитывается не только порядок чередования величин отклонений от тренда, но и сами эти величины – автокорреляционный анализ. Он состоит в вычислении коэффициентов автокорреляции в ряду отклонений от тренда со сдвигом на 1,2,3 и т.д. Полученная серия коэффициентов автокорреляции образует так называемую «автокорреляционную функцию». Уже по коэффициенту автокорреляции первого порядка, то есть со сдвигом на один год можно достаточно надежно судить о преобладающем типе колебаний.
Коэффициент автокорреляции первого порядка вычисляется по формуле:

, (8)

При «пилообразной» колеблемости все произведения в числителе коэффициента будут отрицательны и будет получена существенная величина коэффициента. Напротив, при долгопериодической колеблемости подавляющая часть произведений – в числителе, притом наибольшее при абсолютной величине будут положительны, и в результате коэффициент автокорреляции окажется существенно положительным. При случайно распределенной во времени колеблемости одинаково вероятно любое чередование знаков отклонений от тренда. Поэтому окажется примерно поровну положительных и отрицательных произведений, а коэффициент окажется несущественно отличным от нуля. Существенность отличия коэффициента автокорреляции проверяется по специальным таблицам.

2.3. Прогнозирование на основе динамических рядов

Одно из важнейших практических применений статистического изучения тенденций динамики и колеблемости состоит в прогнозировании на его основе возможных оценок величины изучаемого признака. Прогнозирование на основе измерения тренда и колеблемости один из методов статистического прогнозирования.
Статистический прогноз – это вероятностная оценка возможностей развития того или иного объекта (процесса) и величины его признаков в будущем, полученная на основе статистической закономерности, выявленной по данным прошлого периода. Он предназначен либо для планирования управления объекта, либо для выработки стратегии поведения субъекта, если объект не управляем.
Статистический прогноз предполагает не только верное качественное предсказание, но и достаточно точное количественное измерение вероятных возможностей ожидаемых значений признаков. Для данной цели необходимо, чтобы прогностическая модель имела достаточную точность или допустимо малую ошибку прогноза. Ошибка статистического прогноза будет тем меньше, чем меньше срок упреждения – временной промежуток от базы прогноза до прогнозируемого периода, и чем длиннее база прогноза – прошлый период, однородный по закономерностям развития, на основе информации за который построена прогностическая модель. Для определения срока упреждения используют чисто эмпирическое правило: в большинстве случаев срок упреждения не должен превышать третьей части длины базы прогноза.
Ошибка прогноза связана прямой зависимостью с колеблемостью. Поэтому сила колебаний должна учитываться при выборе соотношения между длиной базы прогноза и сроком упреждения. Чем сильнее колеблемость, тем большим должно быть это соотношение.
Область применения метода прогнозирования не основе тренда и колеблемости весьма широка, что вытекает из большого значения изучения трендов и колеблемости в социально-экономических науках, а так же в процессе практического планирования и управления производством. Одним из самых ярких примеров может служить прогнозирование урожайности на основе трендовой модели, а значит и объема продукции растениеводства, так как среди факторов, влияющих на урожайность, значительную роль играют метеорологические явления, которые в настоящее время наука не в состоянии прогнозировать даже на год в перед, а трендовая модель и измерение колеблемости позволяют рассчитывать вероятные границы прогнозируемой урожайности на несколько лет вперед.

Прогнозирование всегда опирается на опыт развития изучаемого явления в прошлом. Поэтому любой прогноз как выход за пределы изучаемого периода можно рассматривать как экстраполяцию.
Прогноз выражается как в виде точечной или интервальной оценке. Точечный прогноз есть оценка прогнозируемого показателя в точке (в конкретном году, месяце, дне, середине периода прогноза) по уравнению, описывающему тенденцию показателя.
Точечная оценка рассчитывается путем подстановки номера года, на который рассчитывается прогноз, в уравнение тренда. Она является средней оценкой для прогнозируемого интервала времени. Так, точечный прогноз указывает ту величину урожайности, на которую в среднем выйдет объект на прогнозируемый год, если тенденция динамики урожайности сохранится. Эту величину можно использовать в планирование.
Интервальный прогноз по типу прогнозируемого показателя распадается на три вида: прогноз вероятных границ тренда; прогноз вероятных границ уровней отдельных лет с учетом их возможной колеблемости относительно тренда; прогноз вероятных границ среднегодовых уровней динамического ряда.
Прогноз вероятных границ тренда для любого заданного года (срока упреждения) отвечает на вопрос о том, в границах какого интервала окажется с заданной вероятность уровень тренда
в году с номеромtk, после того как станут известны все уровниyiотдельных лет, начиная от следующего за концом базы прогноза уровня
и до уровня в прогнозируемом годуyk(l– период упреждения,k-l– база прогноза). При однократном выравнивании для определения параметра линейного тренда – среднегодового абсолютного прироста – средняя ошибка прогноза тренда для года с номеромtk, отсчитываемого от середины прогноза, вычисляется по формуле:

, (9)

где
– обозначение средней ошибки прогноза тренда;
– оценка среднего квадратического отклонения отдельных уровней от тренда;
N –число уровней динамического ряда.
Среднее квадратическое отклонение получают при однократном выравнивании. Из формулы следует, что ошибка прогноза тренда получается как дисперсия суммы. Первое слагаемое подкоренного выражения – это квадрат средней ошибки параметраа0– свободного члена уравнения линейного тренда, то есть средней ошибки уровня ряда, обратно пропорциональной числу членов ряда, рассматриваемого как выборка. Второе – это дисперсия оценки второго параметраа1, то есть среднегодового прироста, умноженного на число лет от середины базы прогноза до прогнозируемого периода, так как ошибка в прогнозе возрастает пропорционально числу лет. Так как параметрыа0иа1– линейно независимы, то применяется сложение по правилам дисперсии суммы независимых величин.
Для вычисления вероятных границ прогноза тренда необходимо среднюю ошибку прогноза умножить на величину t критерия или нормального распределения, чтобы получить вероятную ошибку прогноза трендаа


а=(10)

Вероятный интервал прогноза тренда равен точечному прогнозу плюс-минус вероятная ошибка

а,(11)

Вероятную ошибку и интервал целесообразно вычислять с достаточно близкими t единицы вероятности: Конкретный выбор вероятности или надежности прогноза зависит от его задач и от силы колебаний. При прогнозе конкретного, уровня ряда динамики в силу того, что конкретный уровень зависит как от тренда, так и от колеблемости, средняя ошибка прогноза рассчитывается по формуле:

, (12)

где
– средняя ошибка тренда;
– среднее ожидаемое для прогнозируемого года отклонение конкретного уровня от тренда или абсолютной колеблемости.
При прогнозе среднегодового уровня на несколько лет рассчитывается точечный прогноз среднегодового абсолютного уровня. Если рассматривается динамика одномерного показателя, это есть средняя арифметическая величина из точечных прогнозов для всех лет усредняемого периода упрежденияl:

, (13)

При линейных формах тренда среднего уровня и тренда среднего квадратического отклонения формула средней ошибки прогноза среднегодового уровня выглядит следующим образом:

, (14)

Для оценки правильности статистического прогноза применяется методика ретроспективной оценки авторегрессионых прогнозов, основу которой составляет система показателей.
1. Показатель оправдываемости. Оправдавшимся считается прогноз, в доверительные границы интервала которого попало фактическое значение уровня. По группе прогнозов вычисляется показатель оправдываемости прогнозовj:

, (15)

гдеgj– число оправдавшихся прогнозов;
g– общее число прогнозов.
Таким образом, показатель оправдываемости прогнозов – это доля оправдавшихся в достаточно однородной по характеру прогнозируемых процессов, достаточной большой для погашения случайностей группе прогнозов.
2. Абсолютное отклонение точного прогноза от фактического уровня:

, (16)

3. Относительное отклонение точечного прогноза от фактического уровня:

, (17)

Относительные отклонения сравнимы не только в пределах группы однородных качественно рядов динамики, но и для любых прогнозов, полученных одним и тем же методом. По средней величине относительного отклонения можно судить о качестве методики прогнозов. Если основание этой методики: гипотеза о сохранении тренда до конца срока упреждения, сохранение типа колеблемости и ее тенденции, правильное отображение этих тенденций прогностическими уравнениями – справедливы, то средняя величина относительного отклонения прогнозов от фактических уровней должна быть близка к средней величине относительных ошибок, заложенных в методике самих прогнозов, то есть величине.

, (18)

где
– средняя статистическая ошибка прогноза, уровня.
Близкое совпадение априорной величины средней относительной ошибки в группе прогнозов и средней фактической апостериорной величины прогнозов при их достаточно большом числе свидетельствует о правильности исходных предпосылок метода прогнозирования.
При этом испытуемая методика находится в неравных ухудшенных условиях, ибо, чем короче исходный динамический ряд, тем труднее верно определить форму и параметры тренда и колеблемости.

3. Природно-экономические условия выращивания сельскохозяйственных культур в Орловской области

Орловская область расположена в центральной части Среднерусской возвышенности, в пределах степной и лесостепной зон. Протяженность ее с запада на восток составляет 200 км, с севера на юг – 150 км.
Климат в области умеренно-континентальный, сравнительно теплый, умеренно влажный. Орловская область расположена в зоне неустойчивого увлажнения. Годовая сумма осадков по центральным районам и юго-востоке области – 440-490 мм. За теплый период года выпадает 300-425 мм, за холодный – 140-185 мм.
Для влагообеспеченности сельскохозяйственных культур очень важны запасы продуктивной влаги в почве. В начале вегетации наибольшие запасы продуктивной влаги содержат в метровом слое суглинистые почвы на севере и западе области: 200-220 мм на зяби и 195-215 мм под озимыми культурами. На остальной территории в зоне оподзоленных и выщелоченных черноземов запасы продуктивной влаги в метровом слое составляют к началу весны 155-180 мм на зяби и 145-200 мм под озимыми культурами. В годы с низкими весенними влагозапасами урожай сельскохозяйственных культур при неполивном земледелии целиком определяется характером осадков в весенне-летний период. Осадки над территорией области выпадают в течение 15-175 дней в году. В теплый период в среднем за месяц бывает 12-16 дней себестоимость осадками, в холодный – 13-19.
На территории области ежегодно в мае-июне бывают засухи и суховеи слабой интенсивности. В среднем за теплый период отмечается 18-19 дней со слабыми засухами и суховеями в северных районах и 24-27 дней в южных районах. Засухи и суховеи средней интенсивности на большей части территории области отличаются не ежегодно, кроме юго-востока области. Важным элементом в борьбе себестоимость ними являются комплекс агролесомелиоративных мероприятий и внедрения в производство засухоустойчивых сортов ряда сельскохозяйственных культур. При этом озимые культуры меньше страдают от засухи и суховеев, дают более высокие урожаи по сравнению с яровыми при условии хорошего развития и благоприятной перезимовки. Неустойчивость снежного покрова ухудшает условия зимовки озимых и может привести к их вымерзанию или выпреванию на значительных площадях.
Водные ресурсы области формируются за счет речного стока, искусственных водоемов, устроенных на малых реках и наполняющихся местным сток, а так же за счет использования подземных вод. При этом основными источниками формирования водных ресурсов являются большие и малые реки, которых на территории области насчитывается около 60. Их водосборная площадь относится к бассейнам рек Оки, Сосны и Десны. Основной особенностью режима рек является их высокий уровень в весеннее половодье. Большинство рек имеет низкие берега, и поводковые воды выходят на поймы, обеспечивая им хорошую влагозарядку. Большая часть рек Орловской области являются мелководными и забор воды из них весьма ограничен.
Важнейшая роль в развитии орошения в области принадлежит зарегулированию стока с помощью водохранилищ и водоемов.
Успешное развитие сельского хозяйства неразрывно связано с правильным использованием земельного фонда, и в первую очередь земельного фонда сельскохозяйственного назначения. Земли, используемые в сельскохозяйственном производстве, требуют проведения крупномасштабных работ по их известкованию.
Расчлененность рельефа, характер почвенного покрова, хозяйственная деятельность человека определили повсеместное активное развитие процессов водной эрозии.
Чрезвычайно разнообразен почвенный покров области. Так, только на пахотных землях насчитывается более 240 почвенных разновидностей. С востока на запад сменяют друг друга различные виды черноземов, серых лестных, дерновоподзелистых и других видов почв. Различен также и механический состав почвенного покрова, который изменяется с востока на запад от глинистого и тяжелосуглинистого до песчаного и супесчаного.
По почвенному покрову область представляет собой зону переходных почв от дерновоподзелистых к черноземам. Их многообразие определяется различными условиями почвообразования. А различное соотношение и распределение почв наложили, в свою очередь, отпечаток на производительность почвенного покрова хозяйств и районов области.

4. Авторегрессионое прогнозирование урожайности зерновых культур

Для характеристики направления и интенсивности развития изучаемого явления рассчитаем систему показателей динамики посевной площади зерновых культур в Покровском районе Орловской области цепными и базисными способами.

Таблица 1
Показатели динамики посевной площади зерновых культур в Покровском районе Орловской области.



Годы

Посевная площадь, га

Абсолютный прирост

Темп роста, %

Темп прироста, %

Абсолют-ные значения




     Страница: 2 из 5
     <-- предыдущая следующая -->

Перейти на страницу:
скачать реферат | 1 2 3 4 5 

© 2007 ReferatBar.RU - Главная | Карта сайта | Справка