Сравнивая значения целевой функции в точкахиустанавливаем, что значение в точкеоказывается лидирующим. Поэтому в следующем шаге приближение квычисляется по формуле
Сравнение значений целевой функции в точкахиоказывается в пользу приближения. Поэтому в очередном шаге абсцисса следующего значения определяется по формуле
Вычисляя значение целевой функции в точке
, получим
Поскольку значение целевой функции оказалось меньшим, чем в точке, то абсцисса следующего значения определяется по формуле
Соответствующее значение целевой функции равно
Процесс вычисления точного значения можно считать завершенным, т.к. последнее значение абсциссы совпало с уже вычисленным на первом этапе
Прирост прибыли составляету.е.с.
Расчёт для второго сегмента рынка.
Цикл №1
Поскольку в данном случае интенсивный фактор относится к логарифмическому типу, оптимальное значение параметра управления в первом цикле будет находиться в интервалеу.е.ст. Для вычисления точного значения воспользуемся методом “фиктивных” точек. Сформируем последовательность F0=F1=1, F2=2, F3=3, F4=3+2=5, F5=5+3=8, F6=8+5=13, F7=13+8=21, F8=34. Отсюда определяем n = 8. Для удобства дальнейших вычислений сформированную последовательность запишем следующим образом Fn=34, Fn-1=21, Fn-2=13, Fn-3=8, Fn-4=5, Fn-5=3, Fn-6=2, Fn-7=1. Вычислим значение целевой функции в точках
Поскольку целевая функция имеет большее значение в точке, то это значение функции запоминается, а следующее приближение значенияопределяется по формуле
Сравниваяизапоминаем большее значение, а следующее значение целевой функции вычисляем в точке
Сравнивая значения целевой функции в точкахиустанавливаем, что значение в точкеснова оказывается лидирующим. Поэтому в следующем шаге приближение квычисляется по формуле
Сравнение значений целевой функции в точкахиоказывается в пользу приближения. Поэтому в очередном шаге абсцисса следующего значения определяется по формуле
Вычисляя значение целевой функции в точке
, получим
Поскольку значение целевой функции оказалось меньшим, чем в точке, то абсцисса следующего значения определяется по формуле
Соответствующее значение целевой функции равно
Поскольку значение целевой функции оказалось меньшим, чем в точке, то абсцисса следующего значения определяется по формуле
Соответствующее значение целевой функции равно
Процесс вычисления точного значения можно считать завершенным, т.к. последнее значение абсциссы совпало с уже вычисленным на первом этапе
Цикл №2.
Поскольку в данном случае интенсивный фактор относится к логарифмическому типу, оптимальное значение параметра управления в первом цикле будет находиться в интервалеу.е.ст. Для вычисления точного значения воспользуемся методом “фиктивных” точек. Сформируем последовательность F0=F1=1, F2=2, F3=3, F4=3+2=5, F5=5+3=8, F6=8+5=13, F7=13+8=21, F8=21+13=34, F9=34+21=55. Отсюда определяем n = 9. Для удобства дальнейших вычислений сформированную последовательность запишем следующим образом Fn=55, Fn-1=34, Fn-2=21, Fn-3=13, Fn-4=8, Fn-5=5, Fn-6=3, Fn-7=2, Fn-8=1.
Вычислим значение целевой функции в точках
Поскольку целевая функция имеет большее значение в точке, то это значение функции запоминается, а следующее приближение значенияопределяется по формуле
Сравниваяизапоминаем большее значение, а следующее значение целевой функции вычисляем в точке
Сравнивая значения целевой функции в точкахиустанавливаем, что значение в точкеснова оказывается лидирующим. Поэтому в следующем шаге приближение квычисляется по формуле
Сравнение значений целевой функции в точкахиоказывается в пользу приближения. Поэтому в очередном шаге абсцисса следующего значения определяется по формуле
Вычисляя значение целевой функции в точке
, получим
Процесс вычисления точного значения можно считать завершенным, т.к. последнее значение абсциссы совпало с уже вычисленным на втором этапе
Цикл №3.
Поскольку в данном случае интенсивный фактор относится к логарифмическому типу, оптимальное значение параметра управления в первом цикле будет находиться в интервалеу.е.ст. Для вычисления точного значения воспользуемся методом “фиктивных” точек. Сформируем последовательность F0=F1=1, F2=2, F3=3, F4=3+2=5, F5=5+3=8, F6=8+5=13, F7=13+8=21, F8=21+13=34, F9=34+21=55, F10=55+34=89, F11=144. Отсюда определяем n = 11. Для удобства дальнейших вычислений сформированную последовательность запишем следующим образом Fn=144, Fn-1=89, Fn-2=55, Fn-3=34, Fn-4=21, Fn-5=13, Fn-6=8, Fn-7=5, Fn-8=3, Fn-9=2, Fn-10=1.
Вычислим значение целевой функции в точках
Поскольку целевая функция имеет большее значение в точке, то это значение функции запоминается, а следующее приближение значенияопределяется по формуле
Сравниваяизапоминаем большее значение, а следующее значение целевой функции вычисляем в точке
Сравнивая значения целевой функции в точкахиустанавливаем, что значение в точкеоказывается лидирующим. Поэтому в следующем шаге приближение квычисляется по формуле
Сравнение значений целевой функции в точкахиоказывается в пользу приближения. Поэтому в очередном шаге абсцисса следующего значения определяется по формуле
Вычисляя значение целевой функции в точке
, получим
Поскольку значение целевой функции оказалось меньшим, чем в точке, то абсцисса следующего значения определяется по формуле
Соответствующее значение целевой функции равно
Поскольку значение целевой функции снова оказалось меньшим, чем в точке, то абсцисса следующего значения определяется по формуле
Соответствующее значение целевой функции равно
Процесс вычисления точного значения можно считать завершенным, т.к. последнее значение абсциссы совпало с уже вычисленным на пятом этапе
Прирост прибыли и коэффициент прироста прибыли составляют соответственноу.е.с. и
Аналитическая часть.
Для проведения сравнительного анализ построим сводную таблицу в которую внесём данные о приростах прибыли по каждому сегменту, циклу.
|
Прибыль
|
Прирост |
к |
Прибыль |
Прирост |
к |
|
у.е.с.
|
у.е.с. |
|
у.е.с.
|
у.е.с. |
|
Начальный капитал
|
52 |
- |
- |
52 |
- |
- |
1 |
41,16 |
-10,84 |
0,79 |
92,63 |
40,63 |
1,78 |
2 |
29,88 |
-11,28 |
0,73 |
200,29 |
107,66 |
2,16 |
3 |
29,23 |
-0,65 |
0,98 |
535,82 |
335,53 |
2,68 |
На основании сводной таблицы можно сделать следующие выводы:
1. Очевидно, что первый сегмент рынка убыточен (в сумме убытки составляют 52-29,23=22,77 у.е.с.). Это можно объяснить небольшим коэффициентом эффективности экстенсивных инвестиций (0,4). При расчёте установлено оптимально распределение совокупных ресурсов, при котором величина убытков минимальна.
2. Втором сегмент рынка интересен с точки зрения получения прибыльности (прирост прибыли составляет 480,82 у.е.с.)
3. Самым эффективным циклом и в первом и во втором сегменте является 3-й цикл. Действительно, с первом сегменте имеем самый минимальный убыток (0,65 у.е.с.), а во втором сегменте самый большой прирост прибыли (335,53 у.е.с.)
Учитывая вышесказанное можно сделать вывод о целесообразности вложения средств во второй сегмент рынка, т.к. именно в нем можно не только избежать возможных убытков но и получить значительную прибыль.
Экономическая часть
Для расчёта экономической эффективности сравним две модели распределения совокупных ресурсов: оптимальной и распределения в равных долях
Соответственно имеем
для оптимальной модели и
для модели с распределением с равных долях
Разница составит
По условию известно, что банковский кредит равен четверти максимума прибыли, т.е.и 80% годовых выплат. Чтобы найти срок окупаемости данных инвестиций составляем уравнение, где запримем срок окупаемости. Отсюда, округляя до целого, получаем 12 лет. Это срок необходимый для того, чтобы окупить вложения в этот проект.
Раздел III. Использование моделей минимизации рисков.
Теоретическая часть.
В условиях рыночной экономики на конечный результат деятельности хозяйствующего субъекта (прибыль, доходы, объем продаж и т. п.) действует значительное число трудно предсказуемых факторов, таких как, уровень спроса и предложения, цены и тарифы, уровень деловой активности, денежные доходы населения, процентные ставки по кредитам и тому подобное. В итоге экономические результаты деятельности организации оказываются вероятностными величинами и могут быть предсказаны с некоторой долей достоверности или риска. Для того чтобы б таких условиях формировать рациональную стратегию управления организацией необходимо учитывать ряд положений сформулированных в рамках теории риска. Рассмотрим эти положения. Первое положение заключается в том, что» вместо детерминированных, жестко фиксированных значений результирующих показателей деятельности организации (например, прибыль, доходы, объемы продаж) необходимо рассматривать их вероятностные оценки, в качестве которых на практике наиболее часто используются такие как математическое ожидание и среднеквадратичное отклонение или дисперсия. Таким, образом, при оценке деятельности организации вводится величина математического ожидания значения некоторого результирующего показателя. Исходя из этого критерия, необходимо выбирать такую стратегию управления, при которой математическое ожидание значения оценочного показателя (например, прибыли или доходов] при прочих равных условиях) окажется наибольшим. Например, если стратегия управления А позволяет получить нормативную прибыль от реализации продукта 1 в размере 100 у.е. с вероятностью 0,5 или от реализации продукта;2 в размере 200 у.е. с вероятностью 0,5, а стратегия управления Б при тех же условиях позволяет получить нормативную прибыль от реализации продукта 1 в размере 150 у.е. с вероятностью 0,5 или от реализации продукта 2 в размере 250 у.е. с вероятностью 0,5 то, стратегия Б, при прочих равных . условиях, является более предпочтительной так как, обеспечивает среднюю величину нормативной прибыли по указанным продуктам (математическое ожидание) равную 200 у.е. в то время как, стратегия А обеспечивает среднюю величину нормативной прибыли равную 150 у.е. Однако, очень часто в практических задачах менеджмента использование только одного указанного выше критерия, является недостаточным для принятия окончательного решения о предпочтительности той или иной стратегии управления. Дело в том, что помимо самой величины среднего значения оценочного показателя для менеджеров имеет важное значение возможность отклонения его фактического значения от наиболее вероятного среднего. Поэтому имеет место второе положение теории риска в соответствии, с которым необходимо дополнительно сравнивать между собой альтернативные стратегии управления также и по величине отклонения фактических значений оценочного показателя от его среднего значения. На практике для этих целей используют ветчину среднеквадратичного отклонения или дисперсию. В рассмотренном выше примере величина среднеквадратичного отклонения для стратегии А совпадает с аналогичной величиной для стратегии Б и составляет, очевидно, +/- 50 у.е., что сразу выделяет стратегию Б как более предпочтительную. Однако, такое совпадение является частным случаем, а в наиболее общей ситуации эти величины не совпадают, т.е. среднеквадратичное отклонение для стратегии А -sабудет либо больше такой же оценки по стратегии Б -sб, либо наоборот. Если будет иметь место первый случай, т.е.sа>sби при этом среднее значение прибыли по стратегии А будет меньше, чем аналогичная величина по стратегии Б, то выбор в пользу стратегии Б как лучшей по прибыли и по риску является очевидным. Для иллюстрации рассмотрим следующий пример. Пусть стратегия А такая же как в рассмотренном выше примере, а стратегия Б позволяет получать нормативную прибыль в размере 150 у.е. с вероятностью 0,5 по продукту 1 или 220 у.е. с вероятностью 0,5 по продукту 2. Очевидно, что средняя нормативная прибыль по стратегии Б составит 185 у.е., что выше, чем Ма =150у.е. и при этомsа= 35у.е.
Р(А)=Р1(А1)*Р2(А2)*…*Рт(Ат),
где А1, А2, ... ,Ат - компоненты, подсистемы организации (события в схеме независимых испытаний,
Р1(А1), P2(A2), …, Рт(Ат) - вероятности обеспечения заданного уровня функционирования подсистем организации, (вероятности наступления событий А1, А2, ..., Ат в схеме независимых испытаний,
т - количество компонентов, подсистем организации.
Для выбора предпочтительной стратегии управления в указанном случае необходимо применить четвертое положение теории риска, которое рекомендует в данной ситуации оценивать альтернативные стратегии по коэффициенту риска в сочетании с математическим ожиданием результата (прибыль). Коэффициент риска выражает вероятность выхода ожидаемой величины результата за нижнюю границу доверительного интервала, либо за интервал, место этого показателя может также использоваться его обратная величина — коэффициент доверия, выражающий вероятность невыхода ожидаемой величины результата за нижнюю границу доверительного интервала, либо за интервал. В соответствии с четвертым положением, выбор лучшего варианта стратегии управления необходимо делать исходя из заданного коэффициента риска или доверия на максимум ожидаемой прибыли, либо исходя из заданного среднего значения прибыли на минимум коэффициента риска или максимум коэффициента доверия. Если предположить, что в рассмотренном выше примере распределение прибыли по продуктам для всех оцениваемых стратегий является нормальным, что обычно имеет место на практике, то вероятности нахождения прибыли в пределах ±sпо всем стратегиям будут равны между собой и составят величину 0,6826, которая и определяет значение коэффициента доверия. Соответственно, коэффициенты риска для всех стратегий будут также равны и составят величину КРА=КРБ=КРВ=0,3174. Рассмотрим доверительные интервалы для, этих значений коэффициента риска. Для стратегии А этот интервал будет равен (80-130) у.е., для стратегии Б - (60-160) у.е. и для стратегии В - (62,8-167,2) у.е. Сразу можно заметить, что стратегия В является лучшей, чем стратегия Б как по нижней, так и по верхней границе и следовательно по среднему значению. Поэтому далее необходимо сделать выбор между стратегиями А и В. Сложность выбора в данном случае заключается в том, что при одинаковых рисках стратегия А является лучшей по нижней границе, а стратегия Б по нижней. Для того, чтобы осуществить объективный выбор необходимо, очевидно, сравнить риски для одинаковых границ доверительного интервала. Начнем с нижней границы. Поскольку лучшей является нижняя граница в стратегии А, примем ее за базу. Риск получить прибыль меньше 80 у.е. в стратегии А, как это можно определить по таблицам нормального распределения, составляет 0,1587, а аналогичный риск для стратегии В составляет 0,2514, что выше, на величину 0,0927. При этом возможная потеря прибыли для стратегии В не превысит (80-52,8)=17,2 у.е. С другой стороны эта стратегия содержит в себе возможность компенсаций этого риска за счет превышения верхней границы доверительного интервала прибыли стратегии А на величину (167,2-130}=37,2 у.е. При этом вероятность получения дополнительной прибыли в пределах 37,2 у.е. составит величину (0,8413-0,6141 )=0,2272, что в 2,5 раза выше, чем вероятность возникновения ущерба в пределах 17,2 у.е. Т.о. ситуация является несимметричной, что позволяет сделать обоснованный выбор в пользу стратегии В. В самом деле, математическое ожидание ущерба составляет величину (17,2*0,0927)= 1,59444 у.е., а математическое ожидание дополнительной прибыли в случае использования стратегии В составит величину (37,2*0,2272)=8,45184у.е, В итоге общая величина математического ожидания получения дополнительной прибыли составит величину (8,45184-1,59444)=6,8574 у.е., что однозначно определяет стратегию В, как лучшую. В рамках рассмотренного четвертого положения теории риска возникает проблема определения оптимальной величины риска. Дело в том, что рисками можно управлять, т.е. создавать системы по удержанию рисков в определенных пределах. Однако создание таких систем связанно с осуществлением, как правило значительных затрат. С другой стороны, системы управления рисками обеспечивают получение дополнительных результатов (прибыли). Т.о. возникает дилемма, что выгоднее нести потери, связанные с рисками, либо затратить некоторые средства по созданию систем снижения рисков. Решение этой задачи в каждом конкретном случае связанно с построением соответствующих моделей анализа рисков, в которых учитывается и соизмеряется влияние наиболее существенных факторов действующих на конечный результат операции (прибыль). В рамках таких моделей можно решить в конкретном случае, что важнее добиться увеличения прибыли на 5-10% или нести соответствующие убытки? Что выгоднее осуществить затраты, связанные со страховкой, либо нести потери, связанные с повышенными рисками? Наиболее часто потери от рисков возникают из-за дефицита в.. различных его формах. Примерами могут служить угон автомобиля, пожар, или непосредственный дефицит ресурсов, вызвавший остановку производства, конвейера и т.п. Наиболее часто модели анализа рисков базируются на нормальном законе распределения вероятностей. В этом случае справедлива следующая формула для определения оптимальной величины коэффициента риска.