РефератБар.ру: | Главная | Карта сайта | Справка
Курсовая работа по ЭММ. Реферат.

Разделы: Экономика и управление | Заказать реферат, диплом

Полнотекстовый поиск:




     Страница: 4 из 4
     <-- предыдущая следующая -->

Перейти на страницу:
скачать реферат | 1 2 3 4 






M

0

0

0

0




0



Оптимальное решение.

Х*= (6,5; 0; 9,35; 0,26,5; 109,1; 9,5; 0,8,5; 9; ), по которому достигается максимальный экономический эффект
Эmax(Х*)=2052,56тыс.руб.
Ответ: Максимальный экономический эффект может достигнуть 2052,56 тыс.руб. если построить скважины так:
I - категории – 6,5
II - категории – 0
III - категории – 9,3
Остатки сырья составят:
1. обсадные трубы -0
2. Химреагенты– 26,51
3. Глина и глинопорошок– 109,1
4. Талевый канат –9,5
5. Гсм - 0
При округлении количества скважин по категориям получаем:

I категория - 6 скважины
II категория - 0 скважины
III категория – 9 скважин

f= 186*6+125*0+90*9 = 1926

Максимальный экономический эффект может достигнуть 1926 тыс.руб. следовательно изменятся остатки:

4800-450*6-300*0-200*9=300 Обсадные трубы - 300
600- 45*6-40*0-30*9= 60 хим/ реагенты - 60
1610-130*6-110*0-70*9=200 глина и глинопорошок - 200
280-20*60-16*0-15*9=25 талевый канат - 25
580-46*6+36*0+30*9=34 ГСМ - 34
2.2 Двойственная задача.
Решая двойственную задачу, мы решаем вопрос минимизации общей оценки всего имеющегося количества ресурсов.
6. Математическая модель двойственной задачи.

Пусть уi- стоимость единицы i-го ресурса

Z= 4800у1+600у2+1610у3+280у4+580у5+15у6+9у7-9у8®min

7. Экономическое содержание двойственной задачи.

При каких значениях уIстоимости единицы каждого из ресурсов в пределах ограниченного объема ресурсов и заданном Экономическом эффекте Эjj-ой скважины общая стоимость затрат Z будет минимальной ?

8. Оптимальное решение двойственной задачи.

Оптимальное решение двойственной задачи найдем из последней строки симплекс-таблицы
Y*=(0,33;0 ,0 ;0 ;0,77 )

Z min(Y*)= 4800*0,33+0+*0+*0+580*0,77=2052,56

Величина двойственной оценки того или оного ресурса показывает, насколько возросло бы максимальное значение целевой функции, если бы объем данного ресурса увеличился на одну единицу.
Вывод: можно построить новый оптимальный план, в котором экономический эффект возрастет на 0,33 тыс.руб , если ввести единицу обсадных труб. А если увеличить расход гсм на единицу, то экономический эффект возрастет на 0,77 тыс.руб.

9. Оценка степени дефицитности ресурсов.

В нашей задаче целью является повышение экономической эффективности плана путем привлечения дополнительных ресурсов, то наш анализ оценок позволит выбрать правильное решение.
Прирост различных ресурсов будет давать неодинаковый эффект, т.е. в избытке у нас такие ресурсы как : глина и глинопорошок, талевый канат и химреагенты. (Остатки даны в пункте 5)
Дефицитными ресурсами в нашей задаче являются обсадные трубы у1= 0,314 и гсм у2= 0,77.

10. Оценить рентабельность производства.

450*0,33+46*0,77=184
200*0,33+30*0,77=89
так как цена не превышает затраты значит предприятие рентабельно.

Литература.
1. Замков О.О., Толстопятенко А.В., Черемных Ю.Н., Математические методы в экономике. Учебник. - М.: МГУ им. М.В. Ломоносова, Изд. «ДИС», 1997г.
2. Коршунов Н.И., Плясунов В.С., Математика в экономике. - М.: Изд. «Вита-Пресс», 1996г.
3. Кузнецов Ю.Н., Кузубов В.И., Волощенко А.Б., Математическое программирование. - М.: Высшая школа, 1976г.
4. Солодовников А.С., Бабайцев В.А., Брайлов А.В., Математика в экономике. Учебник: В 3-х ч. Ч.1. - М.: Финансы и статистика, 1998г.
5. Юдин Д.Б., Гольштейн Е.Г., Задачи и методы линейного программирования. - М.: Сов. Радио, 1964г.
6.Корманов В.Г. Математическое программирование.Учеб.пособие
3-е издание –М: наука 1986 г.

1

2





1-я фирма

2-я фирма


1-я фирма

2-я фирма

0

7,8

0,1



1
3,95

0,1

40,55

140,42

3,56

2

2,99

2,03

31,89

80,33

54,45

3

2,75

2,51

29,72

64,93

62,09



Как видно уже при 3-ей операции выпуски и прибыли 1-ой и 2-ой фирмы и цена значительно приблизились к точке Курно. Посмотрим это графически.





Зеленым цветом обозначены точки последовательных итераций, а красным – точка Курно.


3.2 Кооперативная биматричная игра как модель сотрудничества и конкуренции двух участников.

Математической моделью конфликтов с двумя участниками являются биматричные игры. Такая игра 2х2 задается биматрицей (aij,bij) . В кооперативном варианте такой игры игроки могут согласованно выбирать элемент биматрицы. Если они выбрали элемент (a,b), то Первый игрок получает a , а Второй получает b . Цели игроков одинаковы - выиграть как можно больше в расчете на партию в среднем. Пусть (x,y), (a,b) - две точки из CE. Говорят, что (x,y) доминирует (a,b) если x>=a, y>=b и хотя бы одно из этих неравенств строгое. Недоминируемые точки называются оптимальными по Парето, а их множество - множеством оптимальности по Парето. Еще более узкое множество называется переговорным. Оно определяется так: пусть Vk - максимальный выигрыш, который k-й игрок может обеспечить себе при любой стратегии другого игрока, тогда переговорное множество определяется как множество тех точек множества Парето, у которых k-я координата не меньше Vk. Для нахождения Vk на до решить две задачи ЛП:
V1-->max, a11*x+a21*(1-x)>=V1,a11*x+a12*(1-x)>=V1, 0<=x<=1;
V2-->max, a11*y+a12*(1-y)>=V2,a21*y+a22*(1-y)>=V2, 0<=y<=1.
Дано:
биматрица



2

2

6

6

8

7

9

1


Нанесем на плоскость элементы биматрицы и начертим выпуклую оболочку.





Где красным и зеленым цветом обозначено множество оптимальности по Парето, а зеленым – та его часть, которая является переговорным множеством. V1=8, V2=4.
Цена игры первого игрока V1находится легко, так как в матрице аijесть седловая точка а[2,1]=8. Основная теорема матричных игр утверждает, что для любой матричной игры max{min{M[P,Q]:Q}:P}=min{max{M[P,Q]:P}:Q}, т.е. во множестве смешанных стратегий есть седловая точка, дающая оптимальное решение игры. Поэтому V1= а[2,1]=8, а оптимальная стратегия 1-го игрока Р*=(0 1), так как ему выгодно выбирать все время 2-ю строку.
Для того, чтобы найти цену игры и оптимальную стратегию 2-го игрока необходимо решить задачу ЛП. Если все разделить на V2 и сделать замену переменных, то получим:
V2-->max y/V2=x1 x1 + x2аmin
2*y+6*(1-y)>=V2, (1-y)/V2=x2 2*x1 +6*x2>=1
7*y+1*(1-y)>=V2, 7*x1 +1*x2>=1
0<=y<=1. x1, x20
Решая ее находим V2=4.
Итак, цена игры 2-го игрока V2=4


3.3 Матричная игра как модель конкуренции и сотрудничества.

4. Социально-экономическая структура общества.

4.1 Модель распределения богатства в обществе.

Такой моделью является так называемая «диаграмма или кривая Лоренца».
Рассмотрим функцию распределения богатства в обществе d(z), которая сообщает, что z-я часть самых бедных людей общества владеет d(z)-й частью всего общественного богатства. Далее приведен график функции d(z). Площадь заштрихованной линзы называется коэффициентом Джинни J. Эта величина не более 1/2. Чем она меньше, тем равномернее распределено богатство в обществе. При J>0.2 распределение богатства называется опасно несправедливым - это преддверие социальных волнений. Из функции d(z) можно получить другую функцию w(z) , она сообщает долю общественного богатства, которой владеет z-я часть самых богатых людей (w(z)=1-d(1-z)). Еще одну функцию можно получить из d(z): S(x)=d(1/2+x)-S(1/2-x). Она показывает, что часть общества, которая богаче, чем (-х) самых бедных, но беднее (-х) самых богатых, владеет S(x)-й частью всего общественного богатства. График функции S расположен только над отрезком [0, 1/2]. Говорят, что в обществе есть средний класс, если d(3/4)-d(1/4)>=1/2 или, что то же самое S(1/4)>=1/2 .

Дано: d(z)= exp((7/2)*ln(z))




Как видно на графиках d(0,5)=0,09 ,т.е. половина самых бедных членов общества владеет только 9% всего общественного богатства. Вычислим коэффициент Джинни:
 - J=(01(exp(7/2*ln(z))dz)=0,22, значит J=0,28. Так как 0,28>0,2, то распределение богатства в обществе опасно несправедливо.
s(x)= exp((7/2)*ln(1/2+х)) - exp((7/2)*ln(1/2-х))
w(z)= 1 - exp((7/2)*ln(1-z))

Так как s(0,25)=0,36 и 0,36 Производные функций d(z) и w(z):


4.2 Распределение общества по получаемому доходу.


Пусть F(z) есть доля имеющих месячный доход меньше z по отношению ко всем, имеющим какой-нибудь денежный доход (всех таких членов общества назовем налогоплательщиками). Функцию F(z) вполне правильно трактовать как функцию распределения случайной величины I - месячный доход случайного налогоплательщика. С.в. I можно считать непрерывной. Функция F(z) может быть интересна налоговой инспекции. С помощью функции F(z) можно найти несколько интересных характеристик общества. Например, средний доход, который находится как интеграл от 0 до бесконечности функции z*dF(z). Другой подобной характеристикой является коэффициент Рейнбоу, который находится как отношение решений уравнений F(z)=0.9 и F(z)=0.1, т.е. этот коэффициент показывает отношение доходов 10% членов общества с самыми высокими доходами к доходам 10% с самыми низкими доходами. Если это отношение превышает 20, то распределение доходов называется несправедливым, иначе нормальным.

Дано: F(z)= 1 – exp(6*ln(500/(500+z)))




Как видно на графике 1, F(9)=0,1 и F(234)=0,9. Это говорит о том, что 10% низкодоходных членов общества имеют доход не более 9 у.е., а 10% высокодоходных имеют доход более 234 у.е. Если взять эти числа как отношение, то получим Коэффициент Рейнбоу. Так как 234/9=26 и 26>20, то распределение доходов в данном обществе можно считать несправедливым.

1

2




     Страница: 4 из 4
     <-- предыдущая следующая -->

Перейти на страницу:
скачать реферат | 1 2 3 4 

© 2007 ReferatBar.RU - Главная | Карта сайта | Справка