РефератБар.ру: | Главная | Карта сайта | Справка
Математическое моделирование в сейсморазведке. Реферат.
Полнотекстовый поиск:




     Страница: 1 из 4
     <-- предыдущая следующая -->

Перейти на страницу:
скачать реферат | 1 2 3 4 





1

Лекция
1
Введение

Метод математического моделирования получил распространение в сейсморазведке примерно с середины 60-х годов. Использование синтетических сейсмограмм (СС), являвшихся результатом решения одномерной динамической задачи, имело следующий цели:
·анализ процесса формирования поля отраженных волн в тонкослоистой среде;
·оценку роли многократных волн в этом поле;
·определение сейсмических эффектов, обусловленных изменением литологии или углеводородосодержания и др.
В целом это позволило получить важные для практики интерпретации выводы о том, какие особенности и признаки нужно искать на реальной сейсмозаписи при изучении того или иного геологического объекта.
Переход к двумерному сейсмическому моделированию, т. е. к использованию синтетических временных разрезов (СВР), означал не просто увеличение количества синтезируемых трасс, а качественно новый уровень реализации метода моделирования. Речь идет об открывшейся возможности применения математического моделирования непосредственно в процессе интерпретации данных сейсмических наблюдений
К началу 80-х годов сложилась следующая классификация видов сейсмомоделирования.
1. Структурное моделирование.Обычно такое моделирование осуществляется путем прослеживания лучей, что позволяет воспроизвести истинный путь сейсмических волн при пересечении границ напластований, установить точную связь между временем и глубиной и понять причины своеобразного отображения определенных структурных форм на временном разрезе. С помощью структурного моделирования могут производиться оценка и учет влияния вышележащих толщ на кинематику сейсмических волн в интересующем (перспективном) диапазоне времен или глубин при решении стратиграфических задач.
2. Стратиграфическое моделирование.Первоначально применялось с целью получить оценку влияния залежей нефти и газа, выклинивающихся слоев, зон литолого-фациального замещения и других неоднородностей на такие характеристики сейсмической записи, как изменение амплитуд, искажение вышезалегающих горизонтов, изменение полярности, понижение скорости, наличие и расположение дифрагированных волн. Структурные формы здесь менее важны, а упругие параметры горных пород, наоборот, являются очень важными и решающими. В последнее время стратиграфическое моделирование успешно применяется для обнаружения и подтверждения залежей углеводородов, определения литологии пород, связанных с этими залежами, границ распространения залежей и др.
3. Моделирование сейсмических скоростей.Вначале такое моделирование получило распространение в связи с необходимостью оценки влияния кривизны отражающих и промежуточных границ и локальных неоднородностей на поле сейсмических скоростей или, другими словами, для анализа отклонений параметраVОГТреальных скоростей в среде. Впоследствии были осуществлены удачные опыты использования этого вида моделирования в качестве основы в методах решения обратных кинематических задач для многослойных сред с криволинейными границами раздела и с градиентами скоростей в слоях.
Кроме того, двумерное сейсмомоделирование стало эффективно использоваться и на этапе обработки сейсмической информации для решения таких задач, как:
·расчет статических и кинематических поправок в условиях неоднородностей в верхней части разреза,
·тестирование новых программно-алгоритмических средств,
·синтез оптимальных графов обработки.
Глава 1. Общие принципы и нтерпретации данных сейсморазведки на основе математического моделирования
Раздел 1.1.Системный анализпроблемы интерпретации данных сейсмических наблюдений
В соответствии с методологическим принципом системного подхода представим объект нашего изучения (процесс интерпретации данных сейсмических наблюдений) в виде целостной системы взаимодействующих элементов (верхняя часть рис. 1,а).
Будем называтьинтерпретацией данных сейсмических наблюденийпроцесс построения сейсмогеологической модели, которая не противоречит имеющейся априорной информации (наблюденному волновому полю, данным промысловой геофизики, геологической информации) и опыту геофизика-интерпретатора. Из этого определения следует несколько важных методологических выводов:
1) процесс интерпретации является целенаправленным и поэтому должен быть управляемым;
2) в процессе интерпретации необходимо сопоставлять имеющуюся в данный момент сейсмогеологическую модель с априорными данными (в первую очередь с наблюденным волновым полем) на предмет анализа их противоречивости и нахождения способов ее устранения;
3) ввиду невозможности непосредственного сопоставления таких разнородных объектов, как сейсмогеологическая модель и наблюденное волновое поле, в процессе интерпретации необходимо решать прямую задачу, т.е. вычислять волновое поле по сейсмогеологической модели.
Таким образом, математическое моделирование становится неотъемлемой частью технологии интерпретации.
Конкретизируя схему рис. 1,а, получаем схему интерпретации данных сейсморазведки на основе математического моделирования, представленную на рис. 1,б.Она включает операции шести уровней.
I уровень получение исходной информации в результате геофизических измерений и сбора априорных геологических данных.
II уровень – обработка и анализ указанной информации с различными целями. Полевые данные сейсморазведки обрабатываются в целях получения
§годографов;
§горизонтальных спектров скоростей или графиковVОГТ;
§окончательного временного разреза, который должен содержать минимум помех и искажений и максимум объективной информации о строении среды.
Данные промысловой геофизики обрабатываются главным образом для получения эффективной по сейсмическим критериям одномерной сейсмической модели. Наконец, важнейшую роль, определяющую впоследствии все решения геофизика-интерпретатора, играет предварительно выработанная гипотеза о строении разреза, не противоречащая имеющимся геологическим представлениям.
III уровень состоит в создании исходной для итеративного процесса интерпретации двумерной сейсмогеологической модели или модели нулевого приближения. Эта операция в принципе неформальна и требует максимального использования всей доступной информации I и II уровней. На этом же уровне производится выбор импульса, моделирующего сейсмический сигнал (моделирование сейсмического сигнала).
На
IV уровне для получения модельных аналогов промежуточных и окончательных результатов обработки полевых данных сейсморазведки решаются прямые задачи сейсморазведки.
V уровень – операции сравнения промежуточных и окончательных результатов обработки с их модельными аналогами, имеющие целью количественную оценку сходства между ними.
VI уровень в рассматриваемой схеме представляют процессы принятий по коррекции параметров в общем случае всех операций уровней II–V. В частности, при наименее "глубокой" обратной связи корректируются параметры сейсмомоделирования, т. е. сейсмогеологическая модель и модель импульса падающей волны. Исходными данными для принятия таких решении являются оценки сходства ("рассогласования"), получаемые на уровне V.
Раздел 1.2.Теоретические вопросы автоматизированной интерпретации данных сейсморазведки
Лекция 2
Таблица 1. Влияние параметров двумерного сейсмомоделированияна характеристики отражений



Кинематические идинамические характеристики отражений

Параметры




А. Определяемые по отдельным трассам синтетического временного разреза




1. Время отражения

1. Локальные мощности пластов вышележащей толщи
2. Локальные скорости в пластах вышележащей толщи
3. Геометрия отражающей и промежуточных границ

2. Амплитуда отражения

1. Дифференциация скоростей и плотностей соседних слоев
2. Мощности слоев
3. Количество слоев, участвующих в формировании отраженной волны
4. Геометрия отражающей и промежуточных границ
5. Частота исходного сигнала

3. Преобладающая частота отражения

1. Частота исходного сигнала
2. Мощности слоев
3. Количество слоев, участвующих в формировании отраженной волны
4. Величины частотно-зависимого коэффициента поглощения

4. Полярность отражения

1. Полярность исходного сигнала
2. Порядок чередования слоев
3. Тип насыщающего флюида

5. Форма отражения:
а) длительность волны, выраженная количеством фаз

1. Количество слоев, участвующих в формировании отраженной волны
2. Мощности слоев
3. Ширина спектра исходного сигнала
4. Частота исходного сигнала

б) соотношение амплитуд экстремумов (форма огибающей)

1. Форма огибающей исходного сигнала
2. Количество слоев, участвующих в формировании отраженной волны
3. Дифференциация скоростей и плотностей соседних слоев
4. Мощности слоев





Б. Определяемые по синтетическому временному разрезу




6. Поведение линий t0

1. Геометрия отражающей и промежуточных границ
2. Скорости и величины их градиентов в пластах вышележащей толщи
3. Мощности пластов вышележащей толщи

7. Интерференция
а) изменение времени между соседними фазами отражения

1. Градиент изменения мощностей слоев, участвующих в формировании отраженной волны
2. Градиент изменения скоростей слоев, участвующих в формировании отраженной волны

б) изменения амплитуды отдельных фаз отражения (изменение формы огибающей)

1. Градиент изменения плотностей слоев, участвующих в формировании отраженной волны
2. Криволинейность границ, участвующих в формировании отраженной волны

8. Когерентность

1. Градиент изменения мощностей слоев, участвующих в формировании отраженной волны
2. Градиент изменения скоростей слоев, участвующих в формировании отраженной волны
3. Градиент изменения плотностей слоев, участвующих в формировании отраженной волны
4. Криволинейность границ, участвующих в формировании отраженной волны

9. Расположение и интенсивность дифрагированных волн

1. Наличие и местоположение объектов дифракции (точки выклинивания, примыкания; тектонические нарушения; резкие перегибы слоев, радиус кривизны которых меньше длины волны; участки резкого изменения пластовых параметров и т. п.)
2. Дифференциация скоростей и плотностей в дифрагирующих телах и вмещающих породах



Глава 2. Способы построения сейсмических моделей геологических сред
Предметом нашего рассмотрения являются волновые поля, образующиеся в многослойных средах в случае применения источника, возбуждающего преимущественно продольные волны, наблюдения отраженных волн при достаточно малых углах падения на границы раздела и регистрации только вертикальных компонент смещения. При моделировании таких волновых полей достаточно задавать в слоях модели следующие параметры: скорость продольных волнVp, плотностьsи коэффициент поглощения продольных волнap.Поле продольных отраженных волн будет определяться в этом случае только данными параметрами, а распределение параметров поперечных волн не будет играть существенной роли. Вследствие допущения о малых углах падения волны на границы раздела анизотропия скоростей также не учитывается.
В большинстве случаев для построения двумерных моделей используется информация двух видов: высокоточная, но разреженная по площади геолого-геофизическая информация по разведочным скважинам и менее точная, но существенно более плотная сейсмическая информация между скважинами. Первая позволяет получить достоверные оценки физических свойств разреза в отдельных точках, т. е. построить одномерные модели. С помощью второй информации осуществляется переход к двумерным моделям.
Раздел 2.1.Построение одномерных моделей
Исходная информация, т. е. значения детальных скоростей и плотностей, для построения одномерных тонкослоистых моделей может быть получена несколькими способами:
1. По данным акустического (АК), гамма-гамма (ГГК) или гравитационного каротажей после соответствующей их обработки; обработка АК обычно включает процедуры вычисления скоростей с учетом кавернометрии, коррекции полученных скоростей по сейсмическому каротажу (СК), осреднения и др.; ГГК дает сразу плотность, поэтому обработка его заключается только в осреднении.
2. При отсутствии АК или ГГК, а также при низком их качестве акустические свойства разреза прогнозируются с использованием других широко распространенных промыслово-геофизических характеристик: кажущегося сопротивления (rk), интенсивности первичного (ГК) и вторичного (НГК) гамма-излучения и др.
3. Для приближенного задания акустических параметров тонких слоев иногда используются нормальные или обобщенные зависимости скорости и плотности от глубины для пород различной литологии.
Кроме того, информация о детальном распределении скоростей и плотностей в разрезе может быть получена по данным изучения керна, однако эти данные следует использовать только в тех случаях, если измерения проводились в условиях, близких к пластовым.
Из перечисленных способов предпочтение следует отдать использованию данных АК и ГГК.

Осреднение данных АК и ГГК
Большое количество данных АК, накопленное к настоящему времени, подтверждает представления о тонкослоистой структуре реального скоростного разреза. Практически все осадочные породы, за редким исключением (чистая соль, лед), имеют тонкослоистую структуру с той или иной степенью скоростной дифференциации.
Исходные непрерывные скоростные и плотностные разрезы, характеризующиеся высокой детальностью, не могут быть приняты в качестве одномерных моделей, по которым в дальнейшем предстоит построить двумерную модель. Тем или иным способом производится их осреднение и построение максимально упрощенной однородно-слоистой (или тонкослоистой) модели среды. Такая модель представляется в виде серии тонких однородных пластов, разделенных границами первого рода. При построении тонкослоистых моделей предполагается, что акустическая неоднородность, обусловленная внутренней изменчивостью пород пласта, незначительна по сравнению с межпластовой акустической неоднородностью, связанной с изменением литологии или типа насыщения.
Способ осреднения с порогом.Применение его позволяет получить тонкослоистую модель в виде серии однородных слоев большей мощности по сравнению с исходным разрезом. Все границы в модели представляются границами первого рода. Сущность алгоритма осреднения в данном способе заключается в том, что по заданнымDV– величине значимой скоростной дифференциации иDqmin– минимальной временной мощности слоев из разреза исключаются тонкие слои, время пробега в которыхdti |Vi–Vi–1|ЈDV
Значение скорости в объединенном слое вычисляется как среднее изViиVi-1.Пороговое значение скачка скоростиDVможет быть различным для разных частей разреза.
ИзменяяDV, можно менять число слоев в моделиN, так как оно тем меньше, чем большеDV.Это может быть использовано для автоматического поиска моделей с числом слоев, находящихся в заданных пределахNmin–Nmax.
Раздел 2.2.Построение двумерныхмоделей
Рассмотрим методику построения двумерных сейсмогеологических моделей, представляющих собой комбинацию толстослоистых толщ (покрывающей и подстилающей) и собственно моделируемого интервала в виде совокупности тонких слоев. Чтобы условия интерференции волн на верхней и нижней границах моделируемого интервала не отличались от реальных, необходимо этот интервал расширить вверх и вниз на величину не менееl(длина волны). Пример комбинированной модели представлен на рис. 8,д.
Такие модели используются, как правило, при решении стратиграфических задач, в которых объектами исследования могут быть зоны выклинивания и фациального замещения, залежи углеводородов и др. При этом моделируемый интервал должен совпадать с объектом исследований. Желательно, чтобы в пределах моделируемого профиля имелось две-три опорные точки, в которых по данным глубоких скважин заданы одномерные модели. Когда на профиле или вблизи него нет глубоких скважин, то в принципе возможно построение достаточно детальных моделей только по данным сейсморазведки.
Выбор комбинированного типа моделей для описания способов построения самых разнообразных в целевом отношении двумерных моделей оправдан тем, что:
·во-первых, такая модель получила наибольшее распространение в практике моделирования и,
·во-вторых, излагаемые ниже способы пригодны как для построения толстослоистых моделей (используемых при решении прямых и обратных кинематических задач), так и для построения тонкослоистых моделей по всему разрезу (используемых при решении прямых и обратных динамических задач).
Однако на практике последние строятся очень редко из-за крайней трудоемкости построения таких моделей в двумерном варианте. Поэтому тонкими слоями задается ограниченный интервал, т. е. и в этом случае приходится иметь дело с комбинированной моделью.
При построении покрывающей толстослоистой части комбинированной модели, как правило, используется традиционный сейсмический разрез. При этом желаемым является условие: форма границ и значения скоростей в пластах должны быть такими, чтобы сохранялись кинематические годографы основных отраженных волн, а границам приписаны те коэффициенты отражения, которые получаются при расчетах с учетом их тонкослоистой структуры при определенной форме волны. В некоторых случаях покрывающая толща может задаваться в виде одного или двух пластов с эффективными параметрами или с искусственно подбираемыми скоростями и толщинами, при которых совпадали бы времена отражений на синтетическом и реальном временных разрезах в пределах моделируемого интервала
§ 2.2.1. Построение модели по данным бурения
При отсутствии данных сейсморазведки, т. е. в задачах предварительной оценки сейсмических аномалий, обусловленных особенностями геологического строения разреза (нефтегазоносность, фациальные замещения, выклинивания и др.), двумерные модели наиболее просто строятся путем линейной интерполяции свойств среды и положения границ в области между разведочными скважинами.
Метод линейной интерполяции достаточно точен в том случае, если период изменений используемых для моделирования геолого-геофизических характеристик больше расстояния между скважинами. В подавляющем большинстве случаев это условие не выполняется, и линейная интерполяция является лишь наиболее простым решением из множества вариантов увязки одномерных моделей по соседним скважинам.
Лекция 3
§ 2.2.2. Построение м оделей по данным бурения и сейсморазведки
Наличие сейсмических временных разрезов позволяет отказаться от линейной интерполяции и осуществить построение модели с помощью следующих приемов:
1. Производится тщательная стратиграфическая привязка отраженных волн в точках глубоких скважин, причем наиболее надежная привязка осуществляется по временному разрезу, в который "врезаны" диаграммы скорости по АК в масштабе двойного времени и синтетические сейсмограммы.
2. На сейсмическом разрезе границы путем параллельного переноса точно совмещаются в точках расположения скважин с теми геологическими границами, которые определены в результате стратиграфической привязки (см. п. 1) как доминирующие при формировании отраженной волны. Если по какой-либо скважине получается невязка, то она "разбрасывается" по линейному закону в глубины сейсмической границы между скважинами.
3. На полученный в результате такой коррекции сейсмический разрез, который можно назвать базисной толстослоистой моделью, в точках расположения скважин наносятся тонкослоистые модели, соответствующие моделируемому интервалу. В пределах моделируемого интервала проводятся границы отдельных литологически однородных тонких слоев. При этом в зависимости от предполагаемой степени сложности двумерной модели подходы к ее построению могут быть различными. В зонах выдержанной корреляции сейсмических данных, которые, как правило, соответствуют согласному или близкому к нему залеганию пород, эти границы проводятся так, чтобы они соединяли отметки по скважинам и были параллельны сейсмическим границам между скважинами. Участки изменений сейсмических данных (схождение осей синфазности, изменения формы и интенсивностей колебаний, разрывы в корреляции) тщательно анализируются и с учетом данных по скважинам задаются возможные модели изменений мощности слоев, литолого-фациальных замещений, появления углеводородов и др. Нередки случаи, когда в пределах одного моделируемого интервала встречаются участки различной сложности.
4. Задаются упругие параметры (скорости и плотности) во всех слоях модели, при этом в точках между скважинами эти параметры находятся путем линейной интерполяции значений, полученных ранее в процессе формирования одномерных моделей в точках расположения скважин.
§ 2.2.3. Построение моделей по данным сейсморазведки
Если на профиле нет скважин, то модель может быть построена только по сейсмическим данным. В этом случае целесообразно применять такие процедуры.
1. На основе кинематической интерпретации временного разреза строится базисная толстослоистая модель. Используемые при этом средние и пластовые скорости берутся из данных скоростного анализа, а в условиях Волго-Уральской провинции – чаще из интерполированных или экстраполированных сейсмокаротажных данных.
2. Интервал временного разреза, соответствующий моделируемому объекту, преобразуется во временной разрез волновых сопротивлений по методике псевдоакустического каротажа (ПАК).
3. В ряде точек профиля строятся одномерные модели волновых сопротивлений. Затем от волновых сопротивлений с использованием формулыs=аVb, гдеs– плотность,V– скорость, переходят к оценкам скорости и плотности. Полученные таким способом одномерные модели скорости целесообразно проверять на соответствие со значениями пластовых скоростей, взятыми из интерполированных или экстраполированных сейсмокаротажных данных.
4. Одномерные тонкослоистые модели наносятся на базисную толсто-слоистую модель, после чего, так же как и в предыдущем параграфе, строится комбинированная двумерная модель.
Необходимо отметить, что из-за использования только сейсмических данных, имеющих ограниченный частотный диапазон, тонкослоистую часть комбинированной модели следует рассматривать как эффективную сейсмическую модель.
Если полученные по описанным выше методикам двумерные модели предполагается использовать для интерпретации в итеративном режиме, то их целесообразно называть моделями нулевого приближения (моделями 0-приближения).
§ 2.2.4. Влияние нефтегазонасы щенности на упругие свойства пород
Сведения об изменении упругих свойств (скорости и плотности) пород-коллекторов в зависимости от типа насыщающего флюида можно получить прямым измерением в скважинах, расположенных в контуре залежи и за контуром, изучением керна при различном его насыщении, путем теоретических расчетов.
Прямые измерения в скважинах с помощью сейсмического просвечивания и СК выполнены в ограниченном объеме и полученные результаты не всегда достаточно точны. Обобщение данных показывает, что в нефтенасыщенных песчаных коллекторах при глубинах 1500–3000 м и средней пористости 20% скорость продольных волн уменьшается на 6–12%, в газонасыщенных коллекторах – на 15–30% по сравнению с водонасыщенным коллектором.



     Страница: 1 из 4
     <-- предыдущая следующая -->

Перейти на страницу:
скачать реферат | 1 2 3 4 

© 2007 ReferatBar.RU - Главная | Карта сайта | Справка