РефератБар.ру: | Главная | Карта сайта | Справка
Математическое моделирование в сейсморазведке. Реферат.
Полнотекстовый поиск:




     Страница: 2 из 4
     <-- предыдущая следующая -->

Перейти на страницу:
скачать реферат | 1 2 3 4 






При измерениях на ультразвуковых частотах (АК) величина различия скоростей, обусловленная водо- и нефтегазонасыщенностью пород, меньше, чем на сейсмических частотах. Поэтому использование данных об уменьшении скоростей при нефтегазонасыщении, полученных на ультразвуковых частотах (в скважинах или на образцах керна), для модельных расчетов в сейсмическом диапазоне частот возможно лишь после их коррекции. Удвоение величин понижения скорости будет, по-видимому, вполне допустимым. Данных об изменении плотности при различном насыщении коллектора, которые были бы получены путем прямых измерений в скважинах, пока не имеется.
При отсутствии данных прямых измерений на керне или в скважине (или если эти данные недостаточно надежны) влияние нефтегазонасыщения на скорость и плотность может быть оценено теоретически, с помощью формул из теории распространения упругих волн в пористых средах. Для определения скорости продольных волн в сейсмическом диапазоне частот используется уравнение
, (2.1)
гдеUпиsп– параметры, зависящие соответственно от упругости и плотности флюида;Uскиsск– параметры, характеризующие упругость и плотность скелета (остова) породы.
ЗначенияUиsследующим образом выражаются через свойства твердого материала породы и насыщающего ее флюида:
1)sск=sтв(1 –Kп), гдеsтв– плотность материала, слагающего твердую фазу породы,Kп– пористость;
2)sп=sфKп, гдеsф– плотность флюида, т. е. плотность воды, нефти, газа или их смеси;
3)
, гдеbск– сжимаемость скелета (относительное изменение объема скелета при всестороннем упругом сжатии породы),Gск– модуль сдвига скелета;
4)

гдеbтв– сжимаемость материала, слагающего скелет породы,bф–сжимаемость флюида, величиныbтвиbсксвязаны соотношениемbск=bтв+Kпbп(bп– сжимаемость порового пространства).
При использовании формулы (2.1) основная трудность заключается в выборе величинbскиGск.
Для приближенных расчетов можно использовать уравнение среднего времени (уравнение Уилли)
, (2.2)
гдеVп– скорость в коллекторе, заполненном флюидом;Vск– скорость в скелете;Vф–скорость во флюиде,Kп–коэффициент пористости. Формула (2.2) справедлива для хорошо сцементированных пород. Величину плотности можно оценить по уравнению
sп=sск(1 –Kп) +sфKп, (2.3)
гдеsп– плотность коллектора, заполненного флюидом,sск– плотность скелета,sф– плотность флюида.
Если поры заполнены несколькими компонентами, например газ–вода, нефть–вода и т. д., то имеет место уравнение
sп=sск(1 –Kп) +sфKп+ (sв –sф)SвKп,
гдеsв– плотность воды,Sв– коэффициент водонасыщенности.
Глава 3. Методика интерпретации на основе итеративного моделирования
Раздел 3.1.Особенности полученияи обработки сейсмических данных
, интерпретируемых на основе моделирования
Главное требование, предъявляемое к данным сейсмических наблюдений, которые интерпретируются с помощью итеративного моделирования, состоит в повышенном отношении сигнал/помеха. Опыт сейсмомоделирования показывает, что нижний предел отношения энергии сигнала к энергии помехи, равный 10 – 15, является достаточным для того, чтобы в процессе итеративного подбора параметров модели достичь достаточно высокую степень сходства СВР и реального временного разреза (РВР). Это предельное значение установлено на основе тестового моделирования и сопоставления СВР и РВР по нормированной функции взаимной корреляции (НФВК) и значений отношения сигнал/помеха на РВР по одинаковым фрагментам временных разрезов. На рис. 4 показан пример такого сопоставления по профилю 39 Северо-Маркинской площади, из которого видно, что сходство СВР и РВР до 0,8 и выше удавалось получить только на участках, где отношение сигнал/помеха на РВР достигало 10 – 15 и выше.
Важным является также требование иметь на реальных временных разрезах достаточно высокую временную разрешенность отражений. При повышении разрешенности появляется возможность не только более детально, т.е. в более узких временных окнах, производить сравнение СВР и РВР и последующую коррекцию модели, но и получать более детальные псевдоакустические разрезы, необходимые для построения модели 0-приближения.
Лекция 4
Достижение подобного качества РВР естественно накладывает более жесткие требования на методику полевых наблюдений и последующую обработку сейсмических данных.
§ 3.1.1. Методика полевых наблюдений
Как известно, требования повышения отношения сигнал/помеха и увеличения разрешенности записи в какой-то мере противоречивы. Поэтому на практике важно определить, какое из этих требований является доминирующим при изучении того или иного геологического объекта. Например, при изучении рифогенных построек, грабенообразных прогибов и др. прежде всего нужно обеспечить высокое отношение сигнал/помеха, а при выявлении зон выклинивания и стратиграфического несогласия, первостепенным становится требование высокой разрешенности сейсмической записи.
На поисковом этапе исследований, в целях выявления рифогенных образований, грабенообразных прогибов, выступов кристаллического фундамента методика полевых работ может быть близка к производственной или отличаться от нее некоторым увеличением мощности интерференционных систем при возбуждении и приеме. Основные элементы такой методики следующие:
1) плотность сети профилей 1,5–2,0 пог. км на 1 км2;
2) схема наблюдения – в основном центральная;
3) кратность перекрытия 12 или 24;
4) максимальное расстояние взрыв – приборХmax=1700–2500 м;
5) вынос 25–200 м;
6) расстояние между каналами 40–50 м;
7) группирование сейсмоприемников до 36 на канал, причем расположение приемников в одну или две линии на базе не более 50 м;
8) возбуждение – взрывы в одиночных скважинах с оптимальной глубины или из группы мелких (4–5 м) скважин на базе не более 40–50 м.
При детальных исследованиях требования к методике полевых наблюдений повышаются и сводятся к следующему.
1) плотность профилей должна быть не менее 3 пог. км на 1 км2, причем при детализации, например, грабенообразных прогибов большую часть профилей следует ориентировать вкрест прогиба с расстоянием между ними не более 500 м;
2) в целях повышения пространственной разрешенности расстояние между каналами не должно превышать 25–30 м;
3) группирование сейсмоприемников увеличивается до 48–60 элементов на канал, причем эти элементы располагаются по площади в виде 4–5 параллельных ниток; база группы должна быть не более 50 м.
§ 3.1.2. Методика цифровой обработки
Независимо от содержания решаемой геологической задачи методика обработки должна предусматривать получение временных разрезов с сохранением истинных амплитуд, с высокой разрешенностью отражений, с высоким соотношением сигнал/помеха, а также обеспечивать возможность высокоточного определения интервальных скоростей.
Выполнение указанных требований достигается при использовании усложненного графа обработки, содержащего следующие процедуры:
1) демультиплексация цифровых записей (DMXT);
2) редакция (REDX);
3) коррекция амплитуд за геометрическое расхождение и поглощение (RAMP);
4) вычитание среднескоростных волн-помех (RECON);
5) минимально-фазовая деконволюция исходных записей (DECVTX);
6) широкополосная фильтрация исходных записей (FILVTX);
7) коррекция амплитуд за неидентичность условий возбуждения и приема (NORM);
8) коррекция статических поправок (SUMLAK);
9) коррекция кинематических поправок (сканирование или вертикальные спектры, KINVC);
10) автоматическая коррекция статических поправок (PAKS);
11) накапливание по ОГТ (SUMLC);
12) погоризонтный анализ скоростей (горизонтальные спектры скоростей, HORSP);
13) независимая потрассовая коррекция остаточных фазовых сдвигов в нескольких временных окнах (WINCOR);
14) когерентная фильтрация (AMCOD);
15) нуль-фазовая деконволюция по разрезу (ZEDEC);
16) широкополосная фильтрация по разрезу (FILVTX);
17) когерентная фильтрация (AMCOD);
18) миграция (MIGFK);
19) псевдоакустический каротаж (РАК).
Раздел 3.2.Выбор способа решения прямой динамической задачи
При использовании математического моделирования для целей интерпретации сейсмических данных возникает вопрос о выборе способа вычисления теоретического волнового поля. В последнее время для двумерного моделирования получили распространение способы, основанные на лучевом приближении, и более точные способы, базирующиеся на решении дифракционного уравнения Кирхгофа или волнового уравнения в конечных разностях. Выбор способа является, прежде всего, вопросом методическим. Однако нельзя забывать и о стоимостной стороне дела, поскольку затраты машинного времени при вычислениях по точным способам, например по алгоритму Трорея – Хилтермана, для некоторых, даже не очень сложных моделей, могут быть на один-два порядка выше, чем при вычислениях в лучевом приближении. Особенно остро вопрос о выборе способа вычислений стоит при использовании моделирования в итеративном режиме, когда предполагается многократное вычисление СВР.
При выборе способа его вычисления естественно исходить из того класса сейсмологических моделей, который предопределен решаемой при интерпретации геологической задачей. Зафиксировав этот класс моделей, нужно соотнести его с наиболее существенными допущениями, на которых построены конкретные вычислительные алгоритмы. Отправными здесь являются следующие соображения. Теория распространения сейсмических волн на основе лучевых представлений геометрической сейсмики предполагает, прежде всего, абсолютную локальность сейсмических лучей, что равносильно утверждению о бесконечно малой длине волны, а также распространение энергии волны по лучу и зеркальное ее отражение в единственной точке. Согласно волновым представлениям, полная энергия сейсмической волны есть результат суммирования элементарных волн, при этом в одну и ту же точку приема приходит энергия, отраженная от некоторого участка границы, которая, таким образом, должна иметь определенную протяженность. Вследствие этого возникают явления дифракции, благодаря которым у окончаний границ не наблюдается резкого обрыва отраженных волн. При падении плоской волны на границу, содержащую резкие перегибы, их экстремальные точки являются источниками дифрагированных волн. Эти и некоторые другие явления не могут быть рассчитаны в лучевом приближении.
Для оценки величины области формирования отраженного импульса обычно используется параметр первой зоны ФренеляF, который рассчитывается по известной формуле:
,
гдеН –глубина залегания отражающей границы;l– длина волны. Если протяженность отражающего элемента, связанного с какой-либо неоднородностью в геологическом разрезе, составляет величинуFзоны Френеля и более, то этот элемент отобразится на временном разрезе с максимальной амплитудой, соответствующей отражению от бесконечно длинной границы. При уменьшении горизонтальных размеров элемента (меньшеF) он будет отображаться на временном разрезе с заметным уменьшением амплитуды, все меньше походить на отражение и все больше приобретать вид дифракции, соответствующей отражающей точке.
В связи с этим для практики моделирования большое значение имеет определение хотя бы примерного набора структурных и стратиграфических моделей, для которых ограничения лучевой теории могут оказаться неприемлемо жесткими и для построения СВР потребуются способы, основанные на волновой теории. Далее рассмотрим примеры таких моделей, причем выбранные модели соответствуют геологическим объектам, нередко обнаруживаемым в Волго-Уральской нефтегазоносной провинции. Для каждой модели вычислялись СВР по двум программам: по программе, алгоритм которой основан на лучевых представлениях, и по программе, реализующей численное решение дифракционного уравнения Кирхгофа.
В первой программе СВР вычисляется путем поиска траекторий нормальных лучей для заданных пунктов взрыва-приема (ПВП) и определения амплитуд отраженных волн. В основу алгоритма второй программы положена простая теория дифракции А. Трорея, которую модифицировал Ф. Хилтерман для случая многослойной среды.

§ 3.2.1. Пример 1. Моделирование микрограбенов
Данный пример (рис. 5) иллюстрирует отличие волновых полей от грабенообразных прогибов при различной их ширине. Последняя варьировалась, исходя из величины зоны Френеля, которая для модели на рис. 5,апри видимой длине волныl= 160 м и глубине границыН =2400 м составляетF= 880 м. Поэтому ширина грабенов была задана следующей:l1= 0,5F =440 м,l2=F =880 м,l3= 2F =1760 м.
На временных разрезах, полученных в лучевом приближении (рис 5,б), можно видеть адекватное отображение всех элементов модели грабенообразного прогиба независимо от его ширины.На временных разрезах, полученных по алгоритму Трорея – Хилтермана, наблюдается отчетливая зависимость волновой картины от ширины грабена: при ширине грабена меньше зоны Френеля происходит перекрытие разрыва в отражающих границах за счет дифракции, и приl1=0,5Fразрыв практически незаметен. Существование его можно обнаружить лишь по небольшой аномалии времени и по некоторому ослаблению амплитуд. Это надо учитывать при практической интерпретации временных разрезов, чтобы избежать неправильных выводов относительно ширины прогиба, пределов распространения вверх по разрезу разрывных нарушений и самого существования прогиба.
§ 3.2.2. Пример 2. Моделирование подрифовых горизонтов

Данный пример (рис. 6) иллюстрирует различие в отображении на временных разрезах плоских горизонтальных границ, расположенных глубже рифогенных образований. На рис. 6,апредставлена обобщенная модель рифогенного образования фамен-турнейского возраста, составленная на основе анализа и обобщения сейсмогеологических материалов по большому количеству структур Самарской и Оренбургской областей, рифогенная природа которых доказана. На модели граница 8 соответствует кровле терригенных отложений девона, границы 4 и 5–бобриковскому горизонту, границы 2 и 3– верейскому горизонту, граница 1 – кровле жестких отложений. В рифогенных образованиях, расположенных между границами 5 и 8, скорость 6000 м/с, во вмещающих породах – 5400 и 5500 м/с.
Из сравнения временных разрезов на рис. 6,б,в, прежде всего, видно появление на обоих разрезах ложных антиклинальных перегибов по горизонту 8 с амплитудой 20 мс, хотя на модели граница 8 была задана плоской и горизонтальной. Отличие заключается в том, что на временном разрезе, вычисленном с учетом дифракции (рис. 6,в), по горизонту 8 наблюдается резкое уменьшение интенсивности записи на участках флексурообразного перехода от горизонтальной части к ложной антиклинали. Кроме того, флексурообразные перегибы явились источниками ложных (мнимых) дифрагированных волн. Данный пример должен предостеречь от ошибочной интерпретации реальных временных разрезов, на которых встречены аномалии, подобные приведенным на рис. 6,бпо горизонту 8.Очевидно, такие аномалии можно принять за горстовидные структуры.
Лекция 5
Рассмотренные модели являются достаточно "трудными" для расчетов по лучевому методу, но следует учитывать, что соответствующие этим моделям реальные геологические объекты в Волго-Уральской провинции составляют не более 10-20 % от общего числа нефтегазоперспективных объектов. Кроме того, сравнение результатов моделирования для ряда других, менее сложных моделей (антиклинальные складки и флексурообразные перегибы слоев, тонкослоистая пачка с нерезким изменением толщин слоев или с плавно выклинивающимся одним слоем, выступы кристаллического фундамента с выклиниванием слоев в примыкающих отложениях, верейские и довизейские врезы с нерезкой морфологией и др.) показывает, что временные разрезы, рассчитанные в лучевом приближении и по волновой теории, практически идентичны. В связи с этим применение лучевого метода при модельных расчетах с целью интерпретации может быть достаточно широким и полезным. Однако если в моделях имеются такие элементы, как тектонические нарушения, неоднородности с горизонтальными размерами, меньшими зоны Френеля, резкие перегибы слоев с радиусом кривизны, меньшим длины волны, и если при интерпретации используются в количественной форме динамические характеристики записи (например, при решении задач ПГР), то следует пользоваться более точными методами.
Раздел 3.3.Выбор исходного сейсмического импульса
Результатом решения прямой динамической задачи обычно является СВР в виде импульсных сейсмотрасс, которые затем подвергаются свертке с импульсом, моделирующим сейсмический сигнал. Успех использования СВР для целей интерпретации во многом определяется правильным выбором начального приближения этого импульса.
В связи с этим в практике моделирования применяется следующая методика выбора сейсмического импульса. Основой этой методики является аналитическое выражение импульса Пузырева:
, (3.1)
гдеa0– начальная амплитуда (обычноa0= 1);w0= 2pf0– преобладающая частота, Гц;р –затухание;j– начальная фаза.
Определение начального приближения параметров этого импульса (w0,p,j) производится следующим образом. Начальная фазаjпринимается равнойp/2 (симметричный импульс) на основании того, что в процессе обработки реальных сейсмических записей в результате применения всех видов фильтраций (деконволюция, полосовая фильтрация) стремятся на выходе получить элементарный сигнал симметричной формы (нуль-фазовый).
Преобладающая частотаf0находится по спектру мощности реальных записей, для чего в заданном фрагменте временного разреза по всем трассам вычисляются нормированные автокорреляционные функции, которые затем осредняются, в результате чего получается одна функция
.Для этой функции, предварительно сглаженной, вычисляется спектр мощности. Квадратный корень из этого спектра принимается за осредненный амплитудный спектр сейсмического импульса. Этот спектр нормируется, и по нему находятся два параметра: преобладающая частотаf0и ширина спектраDfна уровне 0,7.
Для определения параметра затуханияриспользуется аналитическое выражение для нормированного амплитудного спектра импульса (3.1) в виде:
. (3.2).
Вначале по этой формуле при известномw0= 2pf0иp= 5000 вычисляется амплитудный спектр теоретического импульса (3.1), по которому также на уровне 0,7 оценивается ширина спектраDf(1)(первая итерация). Это значениеDf(1)сравнивается с определенным по спектру реальных сейсмозаписей значениемDf, и еслиDf(1)>Df, то первоначальноеруменьшается, и наоборот. С новым значениемропять вычисляется по формуле (3.2) спектрF(w), по которому находится новое значениеDf(2)(вторая итерация) и т. д. Шаг изменения порвначале принимается равным 1000, а после получения "вилки" он уменьшается до тех пор, пока не будет выполнено условие |Df(i)–Df|Ј2 Гц, тогда значениерфиксируется.
Полученные оценкиw0иp, а также принятое значениеj=p/2 используются для расчета по формуле (3.1) весовых коэффициентов фильтра для свертки с синтетическим временным разрезом в импульсном представлении.
Рассмотренная, методика предназначена для определения начального приближения параметров импульса, которое, как правило, является достаточно хорошим для параметровw0иp, но принимаемая априори величинаj=p/2 может быть весьма приближенной, поскольку на реальном временном разрезе сигнал может отличаться от нуль-фазового. Поэтому в дальнейшем в процессе итеративной коррекции параметров модели все три параметра импульса также корректируются.
Раздел 3.4.Сопоставлениесинтетического и реального временных разрезов
В соответствии с общими принципами анализа двумерных изображений сопоставляемые объекты должны быть разбиты на элементарные единицы, называемые сегментами. В нашем случае (при сравнении РВР и СВР) это понятие обозначает наименьшие элементы (DX,Dt), которые сохраняют физико-геологический смысл. Конкретно: сегменты, выделяемые на сопоставляемых временных разрезах, ограничиваются по осиtинтервалом с одним или двумя опорными отражениями или таким интервалом между опорными отражениями, который может представлять самостоятельный интерес для моделирования, по осиХ –участком, который характеризуется примерно одинаковым характером записи и в определенной степени соответствует понятию сейсмофации, принятому в сейсмостратиграфии. Необходимо также отметить, что процедура сегментации, являясь неформальной в принципе, выполняется интерпретатором, а те соображения, которыми он руководствуется при выделении сегментов, создают для каждого из них свой контекст при сопоставлении реального и синтетического разрезов.
Наиболее естественной и наглядной являлась бы оценка, характеризующая в целом сходство соответствующих друг другу (т. е. имеющих один и тот же физико-геологический смысл) сегментов реального и синтетического разрезов. Однако для упрощения будем сопоставлять только участки трасс, входящих в указанные сегменты. Это позволяет свести двумерную (поХиt) задачу оценки сходства к совокупности одномерных (только поt) задач. По существу предполагается при этом, что волновое поле квазистационарно поX-координате.
Переходя непосредственно к численному оцениванию сходства трасс РВР и СВР, прежде всего, выделим две группы таких оценок:
1) интегральные оценки, характеризующие общий вид сравниваемых объектов;
2) дифференциальные, характеризующие отдельные их элементы.
При оценивании сходства по интегральным критериям основной операцией является интегрирование с использованием полной информации об объектах, а по дифференциальным критериям – дифференцирование, которое применяется как к объектам в целом, так и к их частям. Конкретные виды критериев сходства трасс СВР и РВР рассматриваются ниже.
Отметим лишь одно, важное в методическом аспекте обстоятельство. Достаточно высокий уровень глобальных оценок сходства, построенных по интегральным и дифференциальным критериям, играет роль соответственно необходимого и достаточного условия достижения цели интерпретации. Это значит, что в процессе интерпретации при оценивании сходства с необходимостью нужно переходить от интегральных критериев к дифференциальным. Фактически это соответствует наращиванию степени детальности рассмотрения сравниваемых разрезов.
Так, при решении стратиграфических задач, вызывающих повышенный интерес в связи с проблемой прогнозирования геологического разреза, очевидно, нельзя заканчивать процесс интерпретации по достижению высокой степени сходства по интегральным критериям, поскольку геологическая сущность таких задач часто выражается в столь незначительных вариациях сейсмогеологической модели и соответствующего ей СВР, чувствительностью к которым обладают лишь дифференциальные критерии. Подобного рода чувствительность достигается усложнением процедуры оценивания сходства или построением этой процедуры на итеративно-диалоговых принципах, чем обеспечивается соответствие оценки сходства визуальным и геолого-геофизическим представлениям интерпретатора.
Из рис. 7,авидно, что применение интегральных критериев требует осторожности, поскольку здесь при очевидном отсутствии визуального сходства значение интегральной оценки довольно высоко (0,84). Рис. 7,бивдемонстрируют слабую чувствительность интегрального критерия к малоамплитудным (локальным) особенностям записи: если учесть форму последнего полупериода записи, трассы на рис. 7,6визуально более похожи между собой, чем трассы на рис. 7,в. Однако значения сходства по НФВК противоречат этому суждению. Рис. 7,г,диеиллюстрируют тот факт, что числовые значения интегральных и дифференциальных оценок могут отличаться весьма существенно. Кроме принципиальной разницы в подходах к оцениванию сходства, это объясняется еще и тем, что при вычислении дифференциальных оценок учитывается качественная информация от геофизика-интерпретатора. Так, выполнив стратиграфическую привязку отражений, он может выделить отражения, являющиеся целевыми в решаемой им геологической задаче, и задать их как наиболее важные при оценивании сходства.
Главной методической целью получения оценок сходства является выделение на каждом шаге итеративного процесса интерпретации тех трасс СВР и РВР, сходство между которыми ниже принятого на данном шаге порога. Наличие протяженных участков СВР, характеризующихся пониженными значениями оценок сходства, указывает на необходимость коррекции соответствующего фрагмента сейсмогеологической модели (иногда вплоть до перехода к другой гипотезе о строении геологического разреза).
Раздел 3.5.Целенаправленная коррекция параметровтонкослоистых моделей
Как и ранее, будем ориентироваться на класс комбинированных моделей геологических сред, введенный в гл. 2. Напомним, что такие модели состоят из собственно моделируемого интервала, представленного совокупностью тонких слоев, и толстослоистой покрывающей части. В число корректируемых параметров включаются скорости, плотности и мощности тонких слоев, а также параметры импульса, моделирующего сейсмический сигнал.
Из методических соображений разделим процесс оптимизации целевой функции, связывающей оценки сходства с параметрами сейсмомоделирования, на два этапа:
1) предварительная коррекция, выполняемая в диалоговом режиме, когда в процессе коррекции предполагается постоянное и непосредственное участие геофизика-интерпретатора;
2) уточнение параметров моделей в автоматическом режиме путем оптимизации некоторого функционала, описывающего сходство трасс реального и синтетического временных разрезов.
§ 3.5.1. Предварительна я коррекция



     Страница: 2 из 4
     <-- предыдущая следующая -->

Перейти на страницу:
скачать реферат | 1 2 3 4 

© 2007 ReferatBar.RU - Главная | Карта сайта | Справка