РефератБар.ру: | Главная | Карта сайта | Справка
Общая теория статистики (Контрольная). Реферат.

Разделы: Экономика и управление | Заказать реферат, диплом

Полнотекстовый поиск:




     Страница: 2 из 3
     <-- предыдущая следующая -->

Перейти на страницу:
скачать реферат | 1 2 3 







Исследовав показатели работы 50-ти предприятий железнодорожного транспорта, можно сказать, что чистая прибыль предприятия находится в прямой зависимости от числа вагонов находящихся в ремонте.

Задание 2.
Рассчитать коэффициенты вариации по группировочному признаку на основании исходных данных и по аналитической группировке согласно своего варианта из задания 1. Объяснить (если есть) расхождения в значениях полученных коэффициентов.

Решение:
Расчет коэффициента вариации проводится по следующей формуле:

где: G – среднее квадратическое отклонение;
x - средняя величина

1)

n – объем (или численность) совокупности,
х - варианта или значение признака (для интервального ряда принимается
среднее значение)
Рассчитаем показатели вариации для примера, рассмотренного в задании 1. Расчет проводится по группировочному признаку. Во-первых, рассчитаем все показатели по исх. данным (см. табл. 1):

2) Среднее кв. отклонение рассчитываем по формуле:

вернемся к форм. ( 1 )
3) Теперь рассчитаем коэффициент вариации по аналитической таблице (см. табл. 2)
Рассчитаем серединные значения интервалов:

4,5 11,5 18.5 25,5 32,5

1 8 15 22 29 36

, где

f - частота, т.е. число, которое показывает, сколько встречается каждая
варианта:

ваг.
Расчет среднего квадратического отклонения по аналитической группировке:

Вывод:в обоих случаях расчета, коэффициент вариации (V) значительно больше 30 %. Следовательно, рассмотренная совокупность неоднородна и средняя для нее недостаточно типична.

Задание 3.
Провести 20 % механическую выборку из генеральной совокупности, представленной в таблице (использовать все 100 предприятий), по показателю, который является результативным признаком в аналитической группировке задания 1 в соответствии с вариантом. С вероятностью 0,997 рассчитать границы изменения средней величины в генеральной совокупности. Рассчитать среднюю данного признака по генеральной совокупности (по табл.) и сравнить с результатом, полученным на основании расчета по выборочной совокупности. Начало отбора начинать с номера предприятия совпадающего с номером варианта (8).

1) Табл.



Номер
предприятия

Чистая прибыль
предпр., млн.руб.


Номер
предприятия

Чистая прибыль
предпр., млн.руб.

1

2


1

2

8
13
18
23
28
33
38
43
48

203
163
131
134
130
117
133
125
141


53
58
63
68
73
78
83
88
93
98

155
136
110
121
148
133
137
138
113
133



2) Для расчета границ изменения средней характеристики генеральной совокупности по материалам выборки воспользуемся формулами:

( 1 )

( 2 )

( 3 )

Х – средняя генеральной совокупности;
Х – средняя выборочной совокупности;
-
предельная ошибка выборки;

t - коэффициент доверия = 0,997 (по условию);
М – средняя ошибки выборки
G2– дисперсия исследуемого показателя;
n – объем выборочной совокупности;
N – объем генеральной совокупности;
n/N – доля выборочной совокупности в объеме генеральной (или %
отбора, выраженный в коэффициенте)

Решение:
1) В данном варианте задания средняя чистая прибыль на одно предприятие по выборочной совокупности равна
Х=136,8 млн.руб.;
2) дисперсия равна = 407,46;
3) коэф-т доверия =3, т.к. вероятность определения границ средней равна =0,997 (по усл);
4) n/N = 0,2, т.к. процент отбора составляет 20 % (по условию).
5) Рассчитаем среднюю ошибку по ф. (3):

6) Рассчитаем предельную ошибку и определим границы изменения средней по ф. (2)

Т.о. с вероятностью 0,997 можно утверждать, что чистая прибыль на одно предприятие в генеральной совокупности будет находиться в пределах от 124,5 млн.руб. до 149,1 млн.руб., включая в себя среднюю по выборочной совокупности.

7) Теперь рассчитаем среднюю по генеральной совокупности (по 100 предприятиям) и сравним ее с полученной интервальной оценкой по выборке:

где а1 + а2 +. . . +а100 – сумма числа вагонов, находящихся в ремонте
(штук в сутки) на 1, 2, 3 . . .,100 предприятиях.

Вывод:Сравнивая среднюю генеральную совокупность равную 140,27 с интервальной оценкой по выборке 124,5 < x < 149,1 делаем выбор, что интервал с заданной вероятностью заключает в себе генеральную среднюю.

Задание 4.
По данным своего варианта (8) рассчитайте:
ШИндивидуальные и общий индекс цен;
ШИндивидуальные и общий индексы физического объема товарооборота;
ШОбщий индекс товарооборота;
ШЭкономию или перерасход денежных средств населения в результате изменения цен на товары в отчетном периоде по сравнению с базисным

Исх. данные:


Вид
товара

БАЗИСНЫЙ ПЕРИОД
("0")

ОТЧЕТНЫЙ ПЕРИОД("1")





Цена за 1 кг, тыс.руб

Продано,
тонн

Цена за 1 кг, тыс.руб

Продано,
тонн

1

2

3

4

5

А

4,50

500

4,90

530

Б

2,00

200

2,10

195

В

1,08

20

1,00

110



Решение:

Индекс – это показатель сравнения двух состояний одного и того же явления (простого или сложного, состоящего из соизмеримых или несоизмеримых элементов); включает 2 вида:
ьОтчетные, оцениваемые данные ("1")
ьБазисные, используемые в качестве базы сравнения ("0")

1) Найдем индивидуальные индексы по формулам:

(где: р, q – цена, объем соответственно; р1, р0- цена отчетного, базисного периодов соответственно; q1, q2- объем отчетного, базисного периодов соответственно)
·для величины
(цены) по каждому виду товара

·для величины q (объема) по каждому виду товаров:

2) Найдем общие индексы по формулам:

представляет собой среднее значение индивидуальных индексов (цены, объема), где j – номер товара.

3) Общий индекс товарооборота равен:

4) Найдем абсолютное изменение показателя (экономии или перерасхода):

получаем:

Вывод:наблюдается перерасход денежных средств населения в результате изменения цен на товары в отчетном периоде по сравнению с базисным, в среднем на 5,54%.

Задание 5.
Определить, как изменяться цены на товары, если их стоимость в среднем увеличится на 3,2 %, а физический объем реализации в среднем не изменится.

Решение:

Для базисного периода для цен характерен следующий индекс:

Для отчетного периода известно увеличение стоимости на 3,2 %, т.е.:

Вывод:из полученного видно, что цены на товары в следствие увеличения их стоимости на 3,2% соответственно возрастут на 3,2%.

Задание 6.
Рассчитать коэффициент корреляции по исходным данным своего варианта, используя задание 1.

Решение:
Коэффициент корреляции оценивает тесноту связи между несколькими признаками. В данном случае требуется оценить связь между двумя признаками. Поэтому необходимо рассчитать парный коэффициент корреляции. Воспользуемся следующими формулами:

где:
- индивидуальные значения факторного и результативного
признаков;
- средние значения признаков;
- средняя из произведений индивидуальных значений признаков;

- средние квадратические отклонения признаков

1) Коэффициент рассчитаем по исходным данным варианта (50 предприятий), которые представлены в табл. 1

2) Расчет средней из произведений проведем в таблице M, заполняя данные о факторном и результативном признаке из таблицы № 1:



Группир. признак


Результат признак


X x Y



Группир.
признак


Результат
признак


XxY


число
вагонов,
шт/сут

чистая
прибыль, млн.руб.


число
вагонов,
шт/сут

чистая
прибыль,
млн.руб.




51

8

130

1040


76

10

134

1340

52

11

148

1628


77

6

136

816

53

36

155

5580


78

7

133

931

54

2

124

248


79

1

127

127

55

2

125

250


80

7

128

896

56

29

135

3915


81

1

118

118

57

14

126

1764


82

5

124

620

58

14

136

1904


83

15

137

2055

59

8

124

992


84

6

110

660

60

8

128

1024


85

17

139

2363

61

5

110

550


86

8

148

1184

62

8

150

1200


87

1

123

123

63

1

110

110


88

10

138

1380

64

6

122

732


89

21

189

3969

65

18

140

2520


90

11

139

1529

66

4

110

440


91

2

122

244

67

9

139

1251


92

2

124

248

68

2

121

242


93

1

113

113

69

1

111

111


94

8

117

936

70

5

132

660


95

6

126

756

71

1

129

129


96

3

130

390

72

7

139

973


97

3

112

336

73

9

148

1332


98

2

133

266

74

25

144

3600


99

25

195

4875

75

16

146

2336


100

5

176

880




     Страница: 2 из 3
     <-- предыдущая следующая -->

Перейти на страницу:
скачать реферат | 1 2 3 

© 2007 ReferatBar.RU - Главная | Карта сайта | Справка