РефератБар.ру: | Главная | Карта сайта | Справка
Курс лекций по общему курсу статистики. Реферат.

Разделы: Экономика и управление | Заказать реферат, диплом

Полнотекстовый поиск:




     Страница: 11 из 15
     <-- предыдущая следующая -->

Перейти на страницу:
скачать реферат | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 







При другом способе определения агрегатного индекса цен в качестве соизмерителя индексируемых величин
и
могут применяться данные о количестве реализации товаров в базисном периоде
. При этом умножение
на индексируемые величины в числителе индексного отношения образует значение
, т.е. сумму стоимости продажи товаров в базисном периоде по ценам текущего периода.
В знаменателе индексного отношения образуется значение
, т.е. сумма стоимости продажи товаров в базисном периоде по ценам того же базисного периода.
Агрегатная формула такого общего индекса имеет вид:


=(2)

Расчёт общего индекса цен по данной формуле предложил немецкий экономист Э. Ласпейрес, и получил название индекса Ласпейреса.
Применяем формулу для расчёта агрегатного индекса цен по данным табл.1:
числитель индексного отношения
= 25 * 7 500 + 30 * 2 000 + 10 * 1000 = 257 500 руб.
знаменатель индексного отношения
= 20 * 7 500 + 30 * 2 000 + 15 * 1 000 = 225 000 руб.
Полученные значения подставляем в формулу 2:
=
или 114,4%
Применение формулы 2 показывает, что по данному ассортименту товаров в целом цены повысились в среднем на 14,4%.
Таким образом, выполненные по формулам 1 и 2 расчёты имеют разные показания индексов цен. Это объясняется тем, что индексы Пааше и Ласпейреса характеризуют различные качественные особенности изменения цен.
Индекс Пааше характеризует влияние изменения цен на стоимость товаров, реализованных в отчётном периоде. Индекс Ласпейреса показывает влияние изменения цен на стоимость количества товаров, реализованных в базисном периоде.
Другим важным видом общих индексов, которые широко применяются в статистике, являются
агрегатные индексы физического объёма товарной массы .
При определении агрегатного индекса физического объёма товарной массы
в качестве соизмерителей индексируемых величин
и
могут применяться неизменные цены базисного периода
. При умножении
на индексируемые величины в числителе индексного отношения образуются значение
, т.е. сумма стоимости товарной массы текущего периода в базисных ценах. В знаменателе —
, т.е. сумма стоимости товарной массы базисного периода в ценах того же базисного периода.
Агрегатная форма общего индекса имеет следующий вид:

=(3)

Поскольку, в числителе формулы 3 содержится сумма стоимости реализации товаров в текущем периоде по неизменным (базисным) ценам, а в знаменателе — сумма фактической стоимости товаров, реализованных в базисном периоде в тех же неизменных (базисных) ценах, то данный индекс является агрегатным индексом товарооборота в сопоставимых (базисных) ценах .
Используем формулу 3 для расчёта агрегатного индекса физического объёма реализации товаров по данным табл.1:
числитель индексного отношения
= 9 500 * 20 + 2 500 * 30 + 1 500 * 15 = 287 500 руб.
знаменатель индексного отношения
= 7 500 * 20 + 2 000 * 30 + 1 000 * 15 = 225 000 руб.
Полученные значения подставляем в формулу 3:
=
или 127,8%
Применение формулы 3 показывает, что по данному ассортименту товаров в целом прирост физического объёма реализации в текущем периоде составил в среднем 27,8%.
Агрегатный индекс физического объёма товарооборота может определяться посредством использования в качестве соизмерителя индексируемых величин
и
цен текущего периода
.
Агрегатная формула общего индекса будет иметь вид:

=(4)

числитель индексного отношения
= 9 500 * 25 + 2 500 * 30 + 1 500 * 10 = 327 500 руб.
знаменатель индексного отношения
= 7 500 * 25 + 2 000 * 30 + 1 000 * 10 = 257 500 руб.
Полученные значения подставляем в формулу 4:
=
или 127,2%
Применение формулы 4 показывает, что по данному ассортименту товаров в целом прирост физического объёма реализации в текущем периоде составил в среднем 27,2%.

Аналогичным образом производится расчёт индекса себестоимости, при этом сравниваются суммы затрат в производстве в отчётном периоде (
— числитель индекса) с суммой затрат в производстве на продукцию отчётного периода по себестоимости базисного периода (
— знаменатель).

Индексы с постоянными
и переменными весами.

При изучении динамики коммерческой деятельности приходится производить индексные сопоставления более чем за два периода.
Поэтому индексные величины могут определяться как на постоянной, так и на переменной базах сравнения. При этом, если задача анализа состоит в получении характеристик изменения изучаемого явления во всех последующих периодах по сравнению с начальным, то вычисляются
базисные индексы . Например, сопоставление объёма розничного товарооборота II, III и IV кварталов с I кварталом.
Но если требуется охарактеризовать последовательно изменения изучаемого явления из периода в период, то вычисляются Но если требуется охарактеризовать последовательно изменения изучаемого явления из периода в период, то вычисляются
цепные индексы . Например, при изучении объёма розничного товарооборота по кварталам года сопоставляют товарооборот II квартала c I, III — cо II и IV — с III кварталом.
В зависимости от задачи исследования и характера исходной информации базисные и цепные индексы исчисляются как индивидуальные, так и общие.
Способы расчёта индивидуальных базисных и цепных индексов аналогичны расчёту относительных величин динамики. Общие индексы в зависимости от их вида вычисляются с переменными и постоянными весами — соизмерителями.
Используя индексный ряд за несколько периодов, можно получить динамику стоимости продукции и динамику товарооборота в неизменных ценах, т.е. в ценах какого - то одного прошлого периода. Такие индексные ряды называются индексами с постоянными весами. Для них действует правило: произведение цепных индексов даёт индекс базисный.
Пример.
По заводу имеются данные об объёме производства и стоимости продукции.

Таблица 2.



Вид. прод.

Ед. изм.

Произведено
продукции

Цена
в 1985г., тыс.руб.

Стоимость продукции в неизменных ценах 1985, тыс.руб.





1988

1989

1990


1988

1989

1990

А

тыс.т.

60

64

69

5 000

300

320

345

Б

млн.шт.

5,5

6,2

7,0

2 000

11000

12400

14000


всего

-

-

-

-

11300

12720

14345


Требуется рассчитать индексы физического объёма продукции с постоянными весами.
Индексы с постоянной базой (базисные):

Индексы с переменной базой (цепные):

Убедимся, что произведение цепных индексов равно базисному:


1,126 * 1,128 = 1,27

Если индексы цен, себестоимости и производительности труда имеют в качестве весов количество продукции отчётного периода, то эти индексы образуют индексные ряды с переменными весами, поскольку в каждом отдельном индексе отчётный период изменяется. Индексы с переменными весами не подчиняются правилу, согласно которому произведение цепных индексов равно базисному.
Пример.
Имеются данные об объёме производства и себестоимости продукции:

Таблица 3.




Вид


Единица

Выработано продукции за квартал

Себестоимость единицы продукции в квартал, руб.




Продукции

измерения

I

II

III

I

II

III

А

шт.

100

120

150

10

9,9

9,6

Б

шт.

300

310

320

35

35

34

В

кг.

7 800

8 200

8 500

0,5

0,48

0,45


Рассчитать индексы себестоимости с переменными весами.

Перемножив цепные индексы, получим:
0,989 * 0, 963 = 0, 9524
Рассчитаем базисный индекс III квартала:

Как видим, расхождение есть, но оно проявляется только в четвёртом знаке после запятой. Величина расхождения не многим более 0,01%.



Средние индексы.

Всякий агрегатный индекс может быть преобразован в средний арифметический из индивидуальных индексов. Для этого индексируемая величина отчётного периода, стоящая в числителе агрегатного индекса, заменяется произведением индивидуального индекса на индексируемую величину базисного периода.
Так, индивидуальный индекс цен равен
, откуда
.
Следовательно, преобразование агрегатного индекса цен в средний арифметический имеет вид:

==

Аналогично индекс себестоимости равен
, откуда
, следовательно,
=
=
,
Аналогично индекс физического объёма продукции (товарооборота) равен, откуда, следовательно,==

Пример.
Определить средний арифметический индекс физического объёма продукции.

Таблица 4.



Отрасль произв.

Стоимость прод. в базисном году, млн. руб.

Индексы физич. объёма прод. в отчёт. году (базис. год = 1)

Сахарная

20

1,47

Мукомольная

30

1,55

Мясная

25

1,71

Рыбная

15

2,1

ИТОГО

90

-


==или 166,7%

Физический объём продукции 4 отраслей увеличился на 66,7%.


Расчеты недостающих индексов
с помощью индексных систем.

Многие экономические индексы тесно связаны между собой и образуют индексные системы. Так, индекс цен связан с индексом физического объема товарооборота или физического объема продукции, образуя следующую индексную систему:
или

Произведение индекса цен на индекс физического объема товарооборота или продукции дает индекс физического объема товарооборота в фактических ценах, или индекс стоимости продукции.
Индекс себестоимости промышленной продукции связан с индексом физического объема продукции по себестоимости, образуя следующую индексную систему:
или

Произведение индекса себестоимости продукции на индекс физического объема дает индекс затрат в производстве.
Используя индексы системы, можно по двум известным индексам найти третий, неизвестный.

Пример.
Имеются следующие данные о продаже товаров в магазинах А:

Таблица 5



Товар

Продано, кг

Цена 1 кг, руб.





базисный период

отчетный период

базисный период

отчетный период

Яблоки

5000

6000

12

10

Бананы

2000

2500

25

24

Апельсины

4000

3800

16

14



Необходимо исчислить индексы цен, физического объема товарооборота в фактических ценах по трем товарам вместе.

Рассчитаем индекс цен:

Цены снизились на 11,33%, и покупатель имел экономию, равную 22100 руб. (19530 — 173200).

Определим индекс физического объема товарооборота:

Товарооборот в неизменных ценах вырос на 12,23%, прирост товарооборота в неизменных ценах составил 21300 руб. (195300 — 174000).
Рассчитаем индекс товарооборота в фактических ценах:

Товарооборот в фактических ценах снизился на 0,5%, что в абсолютном выражении составляет 800 руб. (174000 — 173200). Произведение первых двух индексов дает третий индекс

В определенной связи находятся и разности между знаменателем и числителем индексов: населению по ценам базисного периода было продано товаров на 21300 руб. больше, но в силу того, что население имело экономию от снижения цен на товары в сумме 22100 руб., оно за эти товары в отчетном периоде по фактическим ценам уплатило на 800 руб. меньше.




Контрольная работа №3

Задача №1.
По данным таблицы 6 определить:
1) общий индекс цен по всем товарам;
2) индекс цен по товарам овощной группы;
3) индекс цен по товарам молочной группы;
4) общий индекс физического объёма товарооборота;
5) индекс объёма продукции по овощной группе;
6) индекс объёма продукции по молочной группе;
7) сделайте выводы.

Таблица 6.




Товары

Цена, руб.

Продано,
натур. ед.

Стоим. прод. в отч. периоде по ценам:




(кг.)

Базисн. период

Отчёт. период

Базисн. период

Отчёт. период

Базисн. период

Отчёт. период

Картофель

16

15

80 000

100 000



Капуста

20

20

45 000

50 000



Морковь

40

35

15 000

20 000



Молоко

50

60

12 000

10 000



Творог

150

180

4 000

5 000



Сметана

200

200

200

500






     Страница: 11 из 15
     <-- предыдущая следующая -->

Перейти на страницу:
скачать реферат | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

© 2007 ReferatBar.RU - Главная | Карта сайта | Справка