РефератБар.ру: | Главная | Карта сайта | Справка
Лекции по предмету статистика. Реферат.

Разделы: Экономика и управление | Заказать реферат, диплом

Полнотекстовый поиск:




     Страница: 4 из 7
     <-- предыдущая следующая -->

Перейти на страницу:
скачать реферат | 1 2 3 4 5 6 7 







Относительные показатели вариации

Коэффициент осцилляции –

Коэффициент относительного линейного отклонения –

Коэффициент вариации–

Дисперсия альтернативного признака
Альтернативный признак – это такой признак, которым одни члены обладают, а другие – нет.
доля единиц, не обладающих признаком
доля единиц, обладающих признаком

Виды дисперсий и правила их сложения

Межгрупповая дисперсия
Между отдельными видами дисперсий существует взаимосвязь, которую можно записать в виде правила сложения дисперсий:

Пример
: Распределение сотрудников КБ по производительности труда

1. Расчет общей дисперсии



x

f

xf

x2

x2f

10

50

50

100

500

11

150

165

121

1815

13

50

65

169

845

15

50

75

225

1125

18

70

126

324

2268

20

30

60

400

1200


40

541


7753



2. Расчет дисперсии по первой группе



x

f

xf

x2

x2f

10

50

50

100

500

11

150

165

121

1815

13

50

65

169

845


25

280


3160



3. Расчетдисперсии по второй группе



x

f

xf

x2

x2f

15

50

75

225

1125

18

70

126

324

2268

20

30

60

400

1200


15

261


4593



4. Расчет межгрупповой дисперсии




11,2

25

-2,325

5,405

135,140

17,4

15

3,875

15,015

225,234


40



360,375



5. Расчет средней из индивидуальных дисперсий

Эмпирическое корреляционное отношение
(ЭКО)
На основании правила сложения дисперсий вычисляется эмпирическое корреляционное отношение (ЭКО), которое равно квадратному корню из отношения межгрупповой дисперсии к общей:

Такой порядок вычисления обусловлен разложением общей вариации на вариацию, зависящую от фактора, положенного в основу группировки (в нашем примере – повышение и неповышение квалификации), которая численно равна межгрупповой дисперсии, и общую вариацию.
Межгрупповая дисперсия составляет часть общей дисперсии и складывается под влиянием только одного группировочного фактора. Именно поэтому подкоренное выражение показывает долю вариации за счет группировочного признака.
ЭКО изменяется в переделах от нуля до единицы. Чем ближе его значение к единице, тем большая доля вариации падает на группировочный признак.
В нашем случае

Некоторые математические свойства дисперсий
(1) При вычитании из всех значений признака некоторой постоянной величины дисперсия не изменится.
(2) При сокращении всех значений на постоянный множитель дисперсия уменьшится в раз.
(3) Средний квадрат отклонений значений признака от постоянной произвольной величины больше дисперсии признака на квадрат разности между средней арифметической и постоянной величиной .

На основании свойств дисперсии ее можно подсчитать способом отсчета от условного нуля и способом моментов.



Интервал




90-100

95

2

190

-30

-3

-6

9

18

100-110

105

6

630

-20

-2

-12

4

24

110-120

115

8

920

-10

-1

-8

1

8

120-130

125

18

2 250

0

0

0

0

0

130-140

135

5

675

10

1

5

1

5

140-150

145

4

580

20

2

8

4

16

150-160

155

3

465

30

3

9

9

27

160-170

165

2

330

40

4

8

16

32

170-180

175

2

350

50

5

10

25

50



50

6 390



14


180




Экономические индексы


Понятие индексов
В статистике под индексом понимается относительная величина (показатель), выражающая изменение сложного экономического явления во времени, в пространстве или по сравнению с планом. В связи с этим различают динамические, территориальные индексы, а также индексы выполнения плана.
Многие общественные явления состоят из непосредственно несопоставимых явлений, поэтому основной вопрос – это вопрос сопоставимости сравниваемых явлений.
К какому бы экономическому явлению ни относились индексы, чтобы рассчитать их, необходимо сравнивать различные уровни, которые относятся либо к различным периодам времени, либо к плановому заданию, либо к различным территориям. В связи с этим различают
базисный период (период, к которому относится величина, подвергаемая сравнению) и отчетный период (период, к которому относится сравниваемая величина). При исчислении важно правильно выбрать период, принимаемый за базу сравнения.
Индексы могут относиться либо к отдельным элементам сложного экономического явления, либо ко всему явлению в целом.

Индивидуальные индексы
Показатели, характеризующие изменение более или менее однородных объектов, входящих в состав сложного явления, называются
индивидуальными индексами –ix.
p – ценаq – количествоt – времяT – численностьf – з/пF – фонд з/пS – посевная площадьy – урожайностьz – себестоимость
Индекс получает название по названию индексируемой величины.
В большинстве случаев в числителе стоит текущий уровень, а в знаменателе – базисный уровень. Исключением являетсяиндекс покупательной способности рубля.

Индексы измеряются либо в виде
процентов (%), либо в виде коэффициентов .

Сводные индексы
Сложные явления, для которых рассчитывается сводный индекс, отличаются той особенностью, что элементы, их составляющие, неоднородны и, как правило, несоизмеримы друг с другом. Поэтому сопоставление простых сумм этих элементов невозможно. Сопоставимость может быть достигнута различными способами:
(1) сложные явления могут быть разбиты на такие простые элементы, которые в известной степени являются однородными;
(2) сравнение по стоимости, без разбиения на отдельные элементы.
Цель теории индексов – изучение способов получения относительных величин, используемых для расчета общего изменения ряда разнородных явлений.



Товар

Базисный

Отчетный

1


2

. . .



n





Индекс стоимости товарооборота

Индекс цены товарооборота

Индекс физического объема товарооборота

Проблема выбора весов
Если индексируемой величиной является
качественный признак, то вес принимается на уровне текущего периода.
Если же индексируемой величиной является
количественный признак, то вес принимается на уровне базисного периода.
Такой выбор весов позволяет записать следующую связь:
Сводные индексы в агрегатной форме позволяют нам измерить не только относительное изменение отдельных элементов изучаемого явления и явления в целом в текущем периоде по сравнению с базисным, но и абсолютное изменение.
Например, если мы вычтем из числителя индекса цены его знаменатель, то мы получим абсолютное изменение стоимости товарооборота в результате изменения цен:

То же самое можно сделать для индекса физического объема и для индекса товарооборота.

Средние индексы
Агрегатная форма индекса – одна из важнейших, но не единственная. В практических расчетах очень часто используются средние индексы. Это связано с тем, что, например, в индексе цены пересчет продукции, реализованной в текущем периоде, в базисные цены практически очень сложен. В то время как индивидуальные индексы цены на практике разрабатываются постоянно.

Агрегатный индекс цены тождественен среднему гармоническому индексу цены.
Агрегатный индекс физического объема тождественен среднему арифметическому индексу физического объема.
Проблема связана лишь с прочтением условия задачи.

Цепные и базисные индексы с постоянными и переменными весами

Цепные индексы:

Сумма произведений индивидуальных цепных индексов дает базисный индекс за соответствующий период.

Базисные индексы:

Увидим, что частное от деления последующего базисного индекса на предыдущий индекс дает нам цепной индекс за соответствующий период.

С переменными весами

Цепные

Базисные

С постоянными весам

Цепные

Базисные

Преимущество сводных индексов с постоянными весами состоит в том, что их можно сравнивать между собой, а также получать цепные индексы из базисных и наоборот.

Для индексов с переменными весами такое правило не сохраняется.
С постоянными весами рассчитываются индексы физического объема продукции, а с переменными весами – индексы цен, себестоимости, производительности труда.
Индекс дефлятораиспользуется для перевода значений стоимостных показателей за отчетный период в стоимостные измерители базисного периода.
Индекс дефлятора ВВП в 1998 г.

Для построения индекса дефлятора можно использовать индексы с переменными весами.

Индексы постоянного состава, переменного состава и структурных сдвигов
В тех случаях, когда мы анализируем изменение во времени сравниваемой продукции, мы можем поставить вопрос о том, как в различных условиях (на различных участках) меняются составляющие индекса (цена, физический объем, структура производства или реализации отдельных видов продукции). В связи с этим строятся индексы постоянного состава, переменного состава, структурных сдвигов.
Индекс постоянного (фиксированного) составапо своей форме тождественен агрегатному индексу.



Объединение

Базисный

Отчетный





p0

q0

p0

q0

1

15

5000

11

20000

2

18

10000

13

15000



Цена по обоим предприятиям изменилась на 27,2 %.
Этот индекс не учитывает изменение объема продажи продукции на различных рынках в текущем и базисном периодах.

Индекс переменного составаиспользуется для характеристики изменения средней цены в текущем и базисном периодах.

Цены снизились на 30 %.

Индекс структурных сдвигов

Индексы Пааше, Ласпейреса и "идеальный индекс" Фишера


Сводный индекс цены с базисными весами – этоиндекс цены Ласпейреса.

Надо отметить, что сводный индекс физического объема с базисными весами также именуется индексом физического объема Ласпейреса.

Сводный индекс физического объема с текущими весами – этоиндекс цены Пааше.

Аналогично сводный индекс цены с текущими весами также называетсяиндексом цены Пааше.

Компромиссом явился "идеальный индекс" Фишера:

Аналогичный индекс можно построить и для индексов физического объема.

Территориальные индексы
В статистике существует необходимость сопоставления уровней экономических явлений в пространстве. Для расчета значений используются
территориальные индексы . Для их исчисления соответствующие показатели по всем видам продукции умножаются на количество продукции, произведенной во всей области.
Так как количество продукции каждого вида равно сумме продукции каждого вида в районе А и в районе В, расчет производится по формуле:

– для района А по сравнению с районом В:



     Страница: 4 из 7
     <-- предыдущая следующая -->

Перейти на страницу:
скачать реферат | 1 2 3 4 5 6 7 

© 2007 ReferatBar.RU - Главная | Карта сайта | Справка