РефератБар.ру: | Главная | Карта сайта | Справка
Общая теория статистики. Реферат.

Разделы: Экономика и управление | Заказать реферат, диплом

Полнотекстовый поиск:




     Страница: 6 из 6
     <-- предыдущая следующая -->

Перейти на страницу:
скачать реферат | 1 2 3 4 5 6 






1. Характеристика уровня развития явлений.
2. Сравнение двух или нескольких уровней.
3. Изучение взаимосвязей социально-экономических явлений.
4. Анализ размещения социально-экономических явлений в пространстве.
Для решения этих задач статистическая методология разработала различные виды средних.

2. Среднее арифметическое.
Для выяснения методики расчета средней арифметической используем следующие обозначения:
X - арифметический признак
X (X1, X2, ... X3) - варианты определенного признака
n - число единиц совокупности
- средняя величина признака
В зависимости от исходных данных средняя арифметическая может быть рассчитана двумя способами:
1. Если данные статистического наблюдения на сгруппированы, или сгруппированные варианты имеют одинаковые частоты, то рассчитывается средняя арифметическая простая:

2. Если частоты сгруппированы в данных разные, то рассчитывается среднее арифметическое взвешанное:

- численность (частоты) вариантов
- сумма частот

Среднее арифметическое рассчитывается по разному в дискретных и интервальных вариационных рядах.
В дискретных рядах варианты признака умножаются на частоты, эти произведения суммируются и полученная сумма произведений делится на сумму частот.
Рассмотрим пример вычисления средней арифметической в дискретном ряду:




Заработная плата, руб. Xi

Число сотрудников, чел. fi

Произведение вариант на веса (частоты) Xi*fi

1200

1

1200

1300

2

2600

1400

2

2800

1500

5

7500

1600

3

4800

1650

2

3300

1700

1

1700

1750

1

1750

1800

1

1800

1950

1

1950

2000

1

2000

Итого:

20

31400



В интервальных рядах значение признака задано, как известно, в виде интервалов, поэтому, прежде чем рассчитывать среднюю арифметическую, нужно перейти от интервального ряда к дискретному.
В качестве вариантов Xi используется середина соответствующих интервалов. Они определяются как полусумма нижней и верхней границ.
Если у интервала отсутствует нижняя граница, то его середина определяется как разность между верхней границей и половиной величины следующих интервалов. При отсутствии верхних границ, середина интервала определяется как сумма нижней границы и половины величины предыдущего интервала. После перехода к дискретному ряду дальнейшие вычисления происходят по методике рассмотренной выше.
Если веса fi заданы не в абсолютных показателях, а в относительных, то формула расчета средней арифметической будет следующей:

pi - относительные величины структуры, показывающие, какой процент составляют частоты вариантов в сумме всех частот.
Если относительные величины структуры заданы не в процентах, а в долях, то среднее арифметическое будет рассчитываться по формуле:

3. Средняя гармоническая.
Средняя гармоническая является первообразной формой средней арифметической. Она рассчитывается в тех случаях, когда веса fi не заданы непосредственно, а входят как сомножитель в один из имеющихся показателей. Также как и арифметическая, средняя гармоническая может быть простой и взвешанной.
Средняя гармоническая невзвешанная:

Средняя гармоническая смешанная:

Wi - произведение вариантов на частоты

При расчете средних величин необходимо помнить о том, что всякие промежуточные вычисления должны приводить как в числителе, так и в знаменателе и имеющим экономический смысл показателям.

4. Структурное среднее.
Структурное среднее характеризует состав статистической совокупности по одному из варьирующих признаков. К этим средним относятся мода и медиана.
Мода - такое значение варьирующего признака, которое в данном ряду распределения имеет наибольшую частоту.
В дискретных рядах распределений мода определяется визуально. Сначала определяется наибольшая частота, а по ней модальное значение признака. В интервальных рядах для вычисления моды используется следующая формула:

Xmo - нижняя граница модальности (интервал ряда с наибольшей частотой)
Mo - величина интервала
fMo - частота модального интервала
fMo-1 - частота интервала предшествующего модальному
fMo+1 - частота интервала следующего за модальным
Медианой называется такое значение варьирующего признака, которое делит ряд распределения на две равные части по объему частот. Медиана рассчитывается по разному в дискретных и интервальных рядах.
1. Если ряд распределения дискретный и состоит из четного числа членов, то медиана определяется как средняя величина из двух серединных значений рангированного ряда признаков.
2. Если в дискретном ряду распределения нечетное число уровней, то медианой будет серединное значение рангированного ряда признаков.
В интервальных рядах медиана определяется по формуле:

- нижняя граница медианного интервала (интервала для которого накопленная частота впервые превысит полусумму частот)
Me - величина интервала
- сумма частот ряда
- сумма накопленных частот предшествующих медианному интервалу
- частота медианного интервала

1. Общее понятие о вариации.
Вариацией называется различие значений признака у отдельных единиц совокупности.
Вариация возникает в силу того, что отдельные значения признака формируются по влияние большого числа взаимосвязанных факторов. Эти факторы часто действуют в противоположных направлениях и их совместное действие формирует значение признаков у конкретной единицы совокупности. Необходимость изучения вариаций связана с тем, что средняя величина, обобщающая данные статистического наблюдения, на показывает как колеблется вокруг нее индивидуальное значение признака. Вариации присущи явлениям природы и общества. При этом революция в обществе происходит быстрее, чем аналогичные изменения в природе. Объективно существуют также вариации в пространстве и во времени.
Вариации в пространствепоказывают различие статистических показателей относящихся к различным административно-территориальным единицам.
Вариации во временипоказывают различие показателей в зависимости от периода или момента времени к которым они относятся.

2. Меры вариаций.
К примерам вариаций относятся следующие показатели:
1. размах вариаций
2. среднее линейное отклонение
3. среднее квадратическое отклонение
4. дисперсия
5. коэффициент

1.Размах вариацийявляется ее простейшим показателем. Он определяется как разность между максимальным и минимальным значение признака. Недостаток этого показателя заключается в том, что он зависит только от двух крайних значений признака (min, max) и не характеризует колеблимость внутри совокупности. R=Xmax-Xmin.

2.Среднее линейное отклонениеявляется средней величиной абсолютных значений отклонений от средней арифметической. Оно определяется по формуле:
- простая

Отклонения берутся по модулю, т.к. в противном случае, из-за математических свойств средней величины, они всегда были бы равны нулю.

4.Дисперсия(средний квадрат отклонений) имеет наибольшее применение в статистике как показатель меры колеблимости.
Дисперсия определяется по формулам:

пример: стр. 36

Дисперсия является именованным показателем. Она измеряется в единицах соответствующих квадрату единиц измерения изучаемого признака. В данном случае она показывает, что средний размер отклонения прибыли по 50 предприятиям от средней прибыли составляет 1,48.
Дисперсия может быть также определена по формуле:
;

3.Среднее квадратическое отклонениеопределяется как корень из дисперсии.

По исходным данным приведенным выше, среднее квадратическое отклонение равно:

5.Коэффициент вариацийопределяется как отношение среднего квадратического отклонения к средней величине признака, выраженное в процентах:

Он характеризует количественную однородность статистической совокупности. Если данный коэффициент < 50%, то это говорит об однородности статистической совокупности. Если же совокупность не однородна, то любые статистические исследования можно проводить только внутри выделенных однородных групп.


3. Дисперсия альтернативного признака.
Альтернативными называются 2 взаимоисключающих друг друга признака. То признаки, которыми каждая отдельная единица совокупности либо обладает, либо не обладает. Наличие альтернативного признака принято обозначать через единицу, а отсутствие через 0. Долю единиц обладающих данным признаком обозначают через p (п), а долю единиц на обладающих данным признаком обозначают через q. При этом p+q=1.
Дисперсия альтернативного признака определяется по формуле:

4. Виды дисперсий. Привила их сложения.
Если исследуемую статистическую совокупность разделить на группу, то для каждой из них можно определить групповые средние и дисперсии. Эти дисперсии будет характеризовать колеблимость изучаемого признака каждой отдельной группе. На этой основе можно определить среднюю изнутри групповых дисперсий.

ni=fi - численность единиц в отдельных группах
Эта дисперсия характеризует случайную вариацию признака, на зависящую от фактора положенного в основание группировки.
Вычисляется также межгрупповая дисперсия
.

и ni=fi соответственно средние и численности по отдельным группам.
Эта дисперсия характеризует вариацию по влиянием группировочного признака. Сумма средней изнутри групповых и межгрупповой дисперсий позволяет определить общую дисперсию.

Данное равенство называют правилом сложения дисперсий.
;
, т.е. существует тесная зависимость между изготовлением деталей и другими показателями.
Если значения исследуемого признака выражаются в долях или коэффициентах, то правило сложения дисперсий выражается следующими формулами:

ni - численность единиц в отдельных группах
pi - доля изучаемого признака во всей совокупности

средняя из внутригрупповых дисперсий для долей признаков

1. Виды и формы зависимости между социально-экономическими явлениями.
Многообразие взаимосвязей в которых находятся социально-экономические явления, рождают необходимость в их классификации.
По видам различают функциональную и корреляционную зависимость.
Функциональнойназывают такую зависимость, при которой одному значению факторного признака X соответствует одно строго определенное значение результативного признака Y.
В отличие от функциональной зависимости, корреляционная выражает такую связь между социально-экономическими явлениями, при которой одному значению факторного признака X могут соответствовать несколько значений результативного признака Y.
По направлению различают прямую и обратную зависимость.
Прямойназывают такую зависимость, при которой значение факторного признака X и результативного признака Y изменяются в одном направлении. Т.о. при увеличении значения X, значения Y в среднем увеличиваются, а при уменьшении X - Y уменьшается.
Обратнаязависимость между факторным и результативным признаками, если они изменяются в противоположных направлениях.

2. Статистические методы изучения взаимосвязей.
Важное место в статистическом изучении взаимосвязей занимают следующие методы:
1. Метод приведения параллельных данных.
2. Метод аналитических группировок.
3. Графический метод.
4. Балансовый метод.
5. Индексный метод.
6. Корреляционно-регрессионный.

1. Сущностьметода приведения параллельных данныхзаключается в следующем:
Исходные данные по признаку X располагаются в порядке возрастания или убывания, а по признаку Y записываются соответствующие им показатели. Путем сопоставления значений X и Y, делается вывод о наличии и направлении зависимости.

3. Сущностьграфического методасоставляет наглядное представление наличия и направления взаимосвязей между признаками. Для этого значение факторного признака X располагается по оси абсцисс, а значение результативного признака по оси ординат. По совместному расположению точек на графике делают вывод о направлении и наличии зависимости. При этом возможны следующие варианты:
а\, б/ (вверх) , в\ (вниз).
Если точки на графике расположены беспорядочно (а), то зависимость между изучаемыми признаками отсутствует.
Если точки на графике концентрируются вокруг прямой (б)/, зависимость между признаками прямая.
Если точки концентрируются вокруг прямой (в)\, то это свидетельствует о наличии обратной зависимости.
На основе метода параллельных данных и графического метода, могут быть рассчитаны показатели, характеризующие степень тесноты корреляционной зависимости.
Наиболее кратным из них является коэффициент знаков Фехнера. Он рассчитывается по формуле:

C - сумма совпадающих знаков отклонений индивидуальных значений признака от средней.
H - сумма несовпадений
Данный коэффициент изменяется в пределах (-1;1).
Значение KF=0 свидетельствует об отсутствии зависимости между изучаемыми признаками.
Если KF=±1, то это говорит о наличии функциональной прямой (+) и обратной (-) зависимости. При значении KF>Ѕ0,6Ѕделается вывод о наличии сильной прямой (обратной) зависимости между признаками. Кроме того на основе исходных данных о факторном и результативном признаках, может быть рассчитан коэффициент корреляции ранговСпирмена, который определяется по формуле:

- квадраты разности рангов
(R2-R1), n - число пар рангов
Данный коэффициент, как и предыдущий, изменяется в тех же пределах и имеет одинаковую с KF экономическую интерпретацию.
В тех случаях, когда значение X или Y выражаются одинаковыми показателями, коэффициент корреляции рангов рассчитывается по следующей формуле:

tj - одинаковое число рангов в j - ряду

Если исследуется зависимость между тремя и более математическими признаками, то для ее исследования применяется коэффициент конкордации определяемый по формуле:

m - количество факторов
n - число наблюдений
S - отклонение суммы квадратов рангов от средней квадратов рангов

3. Изучение зависимости между количественными признаками.
Для исследования взаимосвязи качественных альтернативных признаков, принимающих только 2 взаимоисключающих значения, используется коэффициент ассоциации и контингенции. При расчете этих коэффициентов составляется т.н. таблица 4-х камней, а сами коэффициенты рассчитываются по формуле:



Группы по признаку Y

Группы по признаку X

+

-

Итого:




+

a

b

a+b

-

c

d

c+d

Итого:

a+c

c+d

a+b+c+d



Если коэффициент ассоциацииі0,5, а коэффициент контингенцииі0,3, то можно сделать вывод о наличии существенной зависимости между изучаемыми признаками.
Если признаки имеют 3 или более градаций, то для изучения взаимосвязей используются коэффициенты Пирсена и Чупрова. Они рассчитываются по формулам:
С - коэффициент Пирсена
К - коэффициент Чупрова

j- показатель взаимной сопряженности
K - число значений (групп) первого признака
K1 - число значений (групп) второго признака

fij - частоты соответствующих клеток таблицы
mi - столбцы таблицы
nj - строки

Для расчета коэффициентов Пирсена и Чупрова составляется вспомогательная таблица:



Группа признака Y

Группа признака X

1

2

...

i

Итого:




1
f11

f12

...

f1i

n1

2

f21

f22

...

f2i

n2

...

...

...

...

...

...

j

fji

fj2

...

fji

nj

Итого:

m1

m2

...

mi

S(minj



При ранжировании качественных признаков с целью изучения их взаимосвязи используется коэффициент корреляции Кэндалла.

n - число наблюдений
S - сумма разностей между числом последовательностей и числом инвервий по второму признаку.
S=P+Q
P - сумма значений рангов, следующих за данными и превышающих его величину
Q - сумма значений рангов, следующих за данными и меньших его величины (учитывается со знаком «-»).
При наличии связанных рангов формула коэффициента Кендалла будет следующей:

Vx и Vy определяются отдельно для рангов X и Y по формуле:

5. Методы выявления основной тенденции рядов динамики.
Уровни ряда динамики формируются под вниманием 3-х групп факторов:
1. Факторов определяющих основное направление, т.е. тенденцию развития изучаемого явления.
2. Факторов действующих периодически, т.е. направленных колебаний по неделям месяца, месяцам года и т.д.
3. Факторов действующих в разных, иногда в противоположных направлениях и не оказывающих существенного влияния на уровень данного ряда динамики.
Основной задачей статистического изучения данамики является выявление тенденции.
Основными методами выявления тенденции рядов динамики являются:
- метод укрупнения интервалов
- метод скользящей средней
- метод аналитического выравнивания

1. Сущностьметода укрупнения интерваловзаключается в следующем:
Исходный ряд динамики преобразуется и заменяется другими состоящими из других уровней, относящихся к укрупненным периодам или моментам времени.
Например:ряд динамики прибыли малого предприятия за 1997 год по кварталам того же года. При этом уровни ряда за укрупненные периоды или моменты времени могут представлять собой либо суммарные, либо средние показатели. Однако в любом случае рассчитанные таким образом уровни ряда более отчетливо выявляют тенденции, поскольку сезонные и случайные колебания при суммировании или определении средних взаимопогашаются и уравновешиваются.
2.Метод скользящей средней, как и предыдущий предполагает преобразование исходного ряда динамики. Для выявления тенденции формируются интервал, состоящий из одинакового числа уровней. При этом каждый последующий интервал получается путем смещения на 1 уровень от начального. По образованным таким образом интервалам определяются в начале сумма, а затем средние. Технически удобнее определять скользящие средние для нечетного интервала. В этом случае рассчитанная средняя величина будет относиться к конкретному уровню ряда динамики, т.е. к середине интервала скольжения.
При определении скользящей средней по четному интервалу, расчетное значение средней величины относится к промежутку между двумя уровнями, и таким образом теряют экономический смысл. Это делает необходимыми дополнительные расчеты связанные с центрированием по формуле арифметической простой из двух соседних не центрированных средних.

У ШВАЧКИН МАКСИМ ДЭ-103



     Страница: 6 из 6
     <-- предыдущая следующая -->

Перейти на страницу:
скачать реферат | 1 2 3 4 5 6 

© 2007 ReferatBar.RU - Главная | Карта сайта | Справка