РефератБар.ру: | Главная | Карта сайта | Справка
Математические модели и методы обоснования управленческих решений и сферы их применения в практике управления. Реферат.
Полнотекстовый поиск:




     Страница: 2 из 3
     <-- предыдущая следующая -->

Перейти на страницу:
скачать реферат | 1 2 3 






ЁПриклад.
Невелика сімейна фірма виробляє два широкопопулярних безалкогольних напої – “Pink Fuzz” та “Mint Pop”. Фірма може продати всю продукцію, котра буде вироблена, однак обсяг виробництва обмежений кількістю основного інгридієнту та виробничою потужністю обладнання. Для виробництва 1 л “Pink Fizz” потрібно 0,02 години роботи обладнання, а для виробництва 1 л “Mint Pop” – 0,04 години. Витрати спеціального інгридієнту складають 0,01 і 0,04 кг на 1 л “Pink Fizz” і “Mint Pop” відповідно. Щоденно в розпорядженні фірми мається 24 години часу роботи обладнання та 16 кг спеціального інгридієнту. Доход фірми складає 0,10 у.о. за 1 л “Pink Fizz” і 0,30 у.о. за 1 л “Mint Pop”. Скільки продукції кожного виду слід виробляти щоденно, якщо мета фірми – максимізація щоденного доходу?
Рішення.
Крок 1.Визначення змінних. В рамках заданих обмежень фірма повинна прийняти рішення про те, яку кількість кожного виду напоїв слід випускати. Нехай р – число літрів “Pink Fizz”, що виробляється за день. Нехай m – число літрів “Mint Pop”, що виробляється за день.
Крок 2.Визначення цілі та обмежень. Ціль полянає в максимізації щоденного доходу. Нехай Р – щоденний доход, у.о. Він максимізується в рамках обмежень на кількість годин роботи обдаднанняі наявності спеціального інгридієнту.
Крок 3.Виразимо ціль через змінні:
Р = 0,10 р + 0,30 m (у.о. в день).
Це є цільова функція задачі – кількісне співвідношення, що підлягає оптимізації.
Крок 4.Виразимо обмеження через змінні. Існують такі обмеження на виробничий процес:
А) Час роботи обладнання. Виробництво р літрів “Pink Fizz” і m літрів “Mint Pop” потребує (0,02 р + 0,04 m) годин щоденно. Максимальний час роботи обладнання складає 24 год в день. Таким чином: 0,01 р + 0,04 m
24 год/день
Б) Спеціальний інгридієнт. Виробництво р літрів “Pink Fizz” і m літрів “Mint Pop” потребує (0,01 р + 0,04 m)
16 кг/день.
Інших обмежень не має, але розумно передбачити, що фірма не може виробляти напої у від’ємних кількостях , тому:
р
0, m
0.
Кінцеве формулювання задачі лінійного програмування має наступний вигляд. Максимізувати:
Р = 0,10 р + 0,30 m (у.о. в день).
при обмеженнях:
час роботи обладнання: 0,01 р + 0,04 m
24 год/день
спеціальний інгридієнт: 0,01 р + 0,04 m
16 кг/день.
р, m
0. (3, с.402).

Різновидом задач лінійного програмування є
транспортні задачі. Нехай потрібно перевезти деяку кількість одиниць однорідного товару з різних складів в декілька магазинів. Приймемо слідуючі позначення:k– число складів,n– число магазинів, аі– кількість товару на і-ому складі, bj- кількість товару, необхідного j-ому магазину, xij- кількість одиниць товару, що перевозиться з і-го складу в j-ий магазин. Передбачається, що a1+ … + ak= b1+ …bnі що відомі вартості cijперевезення одиниці товару з і-го складу до j-го магазину (вважається, що загальна вартість перевезення пропорційна загальному обсягу перевезення cijxijпри перевезенні з і-го складу до j-го магазину). Потрібно знайти такі обсяги перевезень, щобF(x) = (c11x11+ … + c1nx1n) + (ci1xi1+ … + cinxin) +
+ (ck1xk1+ … + cknxkn) -> minпри обмеженнях:
(II).
Для нас важливим є те, що всі невідомі змінні входять до цільової функції, а також в обмеження в першому ступені і являються неперервно знінюваними величинами. Рівностіn=kне вимагається.
Для розв’язку задач лінійного програмування використовується декілька методів, серед яких найбільш розповсюдженими є симплекс-метод (складається симплекс-таблиця, в якій за допомогою числа ітерацій методом Гауса-Жордана знаходиться оптимальне значення цільової функції) та графічний метод.
На практиці в сферах фінансів, маркетингу, інвестування та інших дуже часто виникає проблема раціонального розподілу якихось ресурсів (капіталовкладень, товару тощо). Щоб прийняти вірне рішення щодо оптимального розподілу ресурсів застосовується математична модель
динамічного програмування. Динамічне програмування використовується для дослідження багатоетапних процесів. Стан системи, якою керують, характеризується певним набором параметрів (фазовими координатами). Процес переміщення в фазовому просторі розподіляють на ряд послідовних етапів і здійснюють послідовну оптимізацію кожного з них, починаючи з останнього. На кожному етапі знаходять умовно оптимальне управління при всеможливих передбаченнях про результати попереднього кроку. Коли процес доходить до вихідного стану, знову проходять всі етапи, але вже з множини умовних оптимальних управлінь обирається одне найкраще [8, с.32]. В простому випадку задача динамічного програмування може вирішуватися наступним методом.
Нехай є n функцій з невід’ємними значеннями f1(x1), x1
d1,..., fn(xn), xn
dn, де d1,…,dn– області визначення змінних. Потрібно знайти максимум (або мінімум)F(x1,…,xn)=f1(x1) + … + fn(xn)при деяких обмеженнях на змінніx1,…,xn.В найпростішому випадку обмеження одне ( не враховуючи природньої вимоги невід’ємності змінних):x1+x2+…+xn=A. Схема дій буде наступною: знаходимоF12(A)=max[f1(x)+f2(A-x)], даліF123(A)=max[F12(x)+f3(A-x)]і т.ін., а в кінці кінців –max F(x1,…,xn)=F12…n(A)=max[F12…n-1(x)+fn(A-x)].
ЁПриклад.
Нехай фірма має три торговельні точки, якусь кількість умовних одиниць капіталу і знає для кожної точки залежність прибутку в ній від обсягу вкладення певного капіталу в цю точку.

(Див. таблицю 1).

Таблиця 1:
Вихідні дані прикладу.



Вкладення

1

2

3

0
1
2
3
4
5
6
7
8
9

0
0,28
0,45
0,65
0,78
0,90
1,02
1,13
1,23
1,32

0
0,25
0,41
0,55
0,65
0,75
0,80
0,85
0,88
0,90

0
0,15
0,25
0,40
0,50
0,62
0,73
0,82
0,90
0,96


Як розпорядитися наявним капіталом так, щоб прибуток був максимальним ?
Звичайно, можна переглянути всі можливі комбінації розподілу капіталу, скажімо при чотирьох одиницях капіталу:
(4,0,0), (0,4,0), (0,0,4); (3,1,0), (3,0,1); (2,2,0), (2,0,2), (2,1,1) і т.ін.
Але якщо задана велика кількість змінних?... Для вирішення цієї задачі можна використовувати динамічне програмування. Введемо наступні позначення:
F1(x), f2(x), f3(x)– функції прибутку в залежності від капіталовкладень, тобто стовпці 2-4 (див. таб.1),F12(A)– оптимальний розподіл, колиАодиниць капіталу вкладується в першу і лругу точки разом,F123(A)– оптимальний розподіл капіталу величиниА, що вкладається у всі точки разом.
Наприклад,для визначенняF12(2)треба знайтиf1(0)+f2(2)=0,41,f1(1)+f2(1)=0,53,f1(2)+f2(0)=0,45і обрати з них максимальну, тобтоF12(2)=0,53.ВзагаліF12(2)=max[f1(x)+f2(A-x)]. ОбчислюємоF12(0), F12(1), F12(2),…F12(9), котрі заносимо в таблицю 2 (див. таб.2).
Для А=4 можливі комбінації (4, 0), (3, 1), (2, 2), (1, 3), (0, 4), котрі дають відповідно загальний прибуток: 0,78; 0,90; 0,86; 0,83; 0,65. Більш детально отримання цих величин показано нижче.
Таблиця 2:
Розподіл капіталу між двома торговими точками.



Вкладення
(А)

f1(x)

f2(x)

F12(A)

Оптимальний розподіл

0
1
2
3
4
5
6
7
8
9

0
0,28
0,45
0,65
0,78
0,90
1,02
1,13
1,23
1,32

0
0,25
0,41
0,55
0,65
0,75
0,80
0,85
0,88
0,90

0
0,28
0,53
0,70
0,90
1,06
1,20
1,33
1,45
1,57

0,0
1,0
1,1
2,1
3,1
3,2
3,3
4,3
5,3
6,3


F12(A)=max{f1(x)+f2(A-x)}

Тепер, коли фактично є залежністьF12від величини капіталу, що вкладується у перші дві точки, можна шукати F123(A)=max[F12(x)+f3(A-x)]. Результати наведемо в таблиці 3. Більш детально отримання цих величин при вкладенні капіталу в три точки показано в таблиці 4 для дев’яти одиниць капіталу.
Таблиця 3:
Розподіл капіталу поміж трьома торговими точками.



Вкладення (А)

F12(x)

f3(x)

F123(A)

Оптимальний розподіл

0
1
2
3
4
5
6
7
8
9

0
0,28
0,53
0,70
0,90
1,06
1,20
1,33
1,45
1,57

0
0,15
0,25
0,40
0,50
0,62
0,73
0,82
0,90
0,96

0
0,28
0,53
0,70
0,90
1,06
1,21
1,35
1,48
1,60

(0, 0, 0)
(1, 0, 0)
(1, 1, 0)
(2, 1, 0)
(3, 1, 0)
(3, 2, 0)
(3, 2, 1)
(3, 3, 1)
(4, 3, 1)
(5, 3, 1) або (3, 3, 3)



Таблиця 4:
Розподіл дев’яти одиниць капіталу поміж трьома точками.



Капітал

x1+x2

x3

F123

9

9
8
7
6
5
4
3
2
1
0

0
1
2
3
4
5
6
7
8
9

1,57
1,45+0,15=1,6 (5, 3, 1)
1,33+0,25=1,58
1,2+0,4=1,6 (3, 3, 3)
1,06+0,5=1,56
0,9=0,62=1,52
0,70+0,73=1,43
0,53+0,82=1,35
0,28+0,90=1,18
0,96



Важливо те, що отримані результати були д тими ж, якби ми користувались не F12і F123, а, скажімо, F31i F312. Зверніть увагу на те, що оптимальне рішення для А=9 – не єдине!
Динамічне програмування потужний та важливий метод вирішення певного класу оптимізаційних задач, оскільни він дозволяє різко скоротити обсяг переборів варіантів і обсяг обчислень [8, с.35].
Для того, щоб надати для розгляду якомога більше математичних моделей (звичайно не всі, інакше потрібно було б писати книгу), надалі я слідуватиму прикладу американських класиків Мескона М., Альберта М. та Хедоурі Ф. і буду приділяти більше уваги короткому описанню тієї чи іншої моделі, ніж вдаватися у математичні подробиці.
Приведемо приклад наступної математичної моделі –
моделі управління запасами. Модель управління запасами використовується для визначення часу розміщення замовлень на ресурси та їх кількості, а також маси готової продукції. Будь-яка організація повинна підтримувати деякий рівень запасів для запобігання затримок на виробництві і в збуті [5, с. 231]. Ціль даної моделі – зведення до мінімуму негативних наслідків накопичення запасів, що виражається в певних витратах. Всупереч відомій приказці (“Запас кишеню не тягне”), підприємцю потрібно піклуватися про те, щоб витрати на зберігання продукції були в розумних межах.
Існують різні види запасів.Буферний запас,що створюється між постачальником та виробником, потрібен для компенсації затримок в поставках, для послаблення залежності споживача від постачальника, для виробництва продукції партіями оптимального розміру.Запас готової продукціїпотрібен для виробництва продукції партіями оптимального розміру, для задоволення очікуваного попиту, для компенсації відхилення фактичного попиту, від того, що прогнозується (гарантійний запас). Можливі різні постановки задачі управління запасами. Наприклад: визначити обсяг замовлень, вважаючи моменти виробництва замовлень фіксованими, або визначити і обсяг замовлень і моменти замовлень. Під оптимальним як правило розуміється рішення, що мінімізує суму всіх затрат, пов’язаних із створенням запасів. Затрати бувають трьох типів: затрати на оформлення і отримання замовлення, вартість зберігання продукції і штрафи при виснаженні запасів за недопоставлену продукцію. Приходиться також враховувати характеристики попиту (відомий – невідомий, постійний – залежить від часу, виникає в певні моменти – існує весь час) і замовлень (виконуються одразу ж – через деякий час, приймаються в будь-який час – в певні моменти, замовлене надходить рівномірно – нерівномірно і т.ін.)[8, с.44].
Досить часто менеджеру доводиться вирішувати проблеми, які носять масовий характер. Наприклад це може стосуватися обслуговування клієнтури, яка надходить чергою або врахування затрат часу при простої на митниці і т.ін. Деколи доводиться розробити автоматизоване устаткування, до якого в порядку черги будуть надходити об’єкти для обслуговування. Мескон М. наводить приклади масового характеру при прийомі дзінків в авіакомпанію для резервування квитків та інші. Всі ці проблеми можуть вирішуватися по-різному, але якщо брати до уваги теоретичний підхід з наукової точки зору, то в даному випадку для вирішення цих питань застосовують
моделі теорії черг або оптимального обслуговування. “Принципова проблема полягає в урівноваженні затрат на додаткові канали обслуговування та втрат від обслуговування на рівні нижчому за оптимальний” – стверджує Мескон. Моделі черг надають керівництву інструментарій для визначення оптимальної кількості каналів обслуговування, котрі необхідно мати, щоб збалансувати витрати у випадках надто малої і надто великої їх кількості.
Серед інших моделей, які не обійшла “королева наук” – математика, величезне практичне значення має
теорія ігор . Про сферу застосування даної моделі (як і про інші моделі) буде сказано в наступному розділі. Отже слід розкрити, що таке гра і які загальні принципи її проведення. На змістовному рівні під грою можна розуміти взаємодію декількох осіб (гравців), які мають кінцевий стан (виграш), якого добивається кожен гравець, але не кожен може добитися. Прикладом гри може слугувати боротьба декількох фірм за державне замовлення. В залежності від кількості гравців в грі може існувати якась скінченна кількість ходів кожного гравця. Послідовність ходів гравців, яка називається партією, призводить гру до кінцевого стану. Якщо гра складається лише з двох гравців, то схему такої гри подають у вигляді таблиці – платіжної матриці (назва говорить сама за себе – платіж, що сплачується 1-им гравцем 2-му, якщо 2-й виграє). Нерідкі випадки, коли по завершенню гри жоден з гравців не отримує ані виграшу, ані програє. Такий випадок носить назву гри двох осіб з нульовою сумою. Важливим поняттям теорії ігор є поняття стратегії – встановлений гравцем метод вибору ходів протягом гри.
Розглянемо приклад вирішення задачі теорії ігор.
ЁПриклад. “Я думаю про те, якби змінити розташування мого автомобільного салону по причині близького розташування конкурента. Якщо я зміню розташування і він теж змінить, то я ризикую втратити пів-мільйона доларів від чистого продажу. Якщо я перерозташуюсь, а він ні, я зароблю на цьому мільйон від чистого продажу. Якщо я залишусь там де є, а він переїде, я зароблю півтора мільйони, але якщо я залишусь і він теж, то я втрачаю мільйон. Якби ж я міг правити світом, я б залишився там де є, а його примусив би переїхати, бо в такому разі мене чекає найбільший прибуток. Однак я не можу ні примусити його, ні передбачити що там буде. Якщо ж я просто хочу мінімізувати втрати, я зміню своє розташування. Матриця рішень проілюструє мою ділему і можливе вирішення проблеми:
Таблиця 5:
Матриця рішень.


Дія конкурента

Моя дія




Змінити розташування

Не змінювати розташування

Змінити розташування

-$500,000

+$1,500,000

Не змінювати розташування

+$1,000,000

-$1,000,000


З мого боку, мені потрібна якась очікувана винагорода, яка залишиться сталою незалежно від рішення мого конкуренту. Таким чином, я введу поняття ймовірності (Р) залежної від дій. Якщо мій конкурент вирішить змінити місцерозташування, моя очікуваня винагорода становитиме -$500,000*Р+$1,500,000*(1-P). Якщо він вирішить залишитись там де він є, моя винагорода дорівнюватиме $1,000,000*P-$1,000,000*(1-P). Оскільки я хочу, щоб винагорода була однаковою в кожному випадку, маємо рівняння:
-$500,000*P + $1,500,000*(1-P) = $1,000,000*P - $1,000,000*(1-P)
або
P = .6250 і (1-P) = .3750
Таким чином, якщо мій конкурент переїде, моя очікувана винагорода (виграш) дорівнює -$500,000 x .6250 + $1,500,000 x .3750 =
$250,000.


     Страница: 2 из 3
     <-- предыдущая следующая -->

Перейти на страницу:
скачать реферат | 1 2 3 

© 2007 ReferatBar.RU - Главная | Карта сайта | Справка